Ejemplo n.º 1
0
def breadthFirstSearch(problem):
    """
    Search the shallowest nodes in the search tree first.
    """
    "*** YOUR CODE HERE ***"
    #util.raiseNotDefined()
    import GraphSearch
    return GraphSearch.graphSearch(problem, util.Queue())
Ejemplo n.º 2
0
    def run_search_exhaustive(self):
        self.statusConsole.clear()
        msgFormat = 'Run {}: {} -> {}, Cost: {:.2f}, Time Elapsed: {:.2f}ms\n'
        coordinates = extract_coordinates()
        counter = 0
        benchmark = list()
        final_cost = list()
        for i in coordinates:
            for j in coordinates:
                if (i != j):
                    counter = counter+1
                    t0 = time.perf_counter()
                    total_cost = 0

                    #print('Computing, {} to {}'.format(i, j))
                    try:
                       result = GraphSearch.GraphSearch(i, j,'path')
                    except:
                       print('Failed {} to {}'.format(i,j)) 
                    t1 = time.perf_counter()
                    for node in result:
                        cost = node.stepCost
                        total_cost += cost

                    print('Computing, {} to {}'.format(i, j))
                    try:
                       result = GraphSearch.GraphSearch(i, j,'path')
                    except:
                       print('Failed {} to {}'.format(i,j))	
                    t1 = time.perf_counter()
                    for node in result:
                    	cost = node.stepCost
                    	total_cost += cost
                    final_cost.append(total_cost)
                    benchmark.append((t1-t0)*1000)
                    self.statusConsole.insertPlainText(
                        msgFormat.format(counter, i, j, total_cost, (t1 - t0)*1000))
        msgFormat = '\nBenchmarks:\nMean Cost: {:.2f}\nAvg Time: {:.2f}ms\nMin Time: {:.2f}ms\nMax Time: {:.2f}ms'             
        self.statusConsole.insertPlainText(msgFormat.format(
            statistics.mean(final_cost), statistics.mean(benchmark), min(benchmark), max(benchmark)))            
Ejemplo n.º 3
0
    def __init__(self,G):
        """Search for strongly connected components of graph G."""

        # set up data structures for DFS
        self._components = []
        self._dfsnumber = {}
        self._activelen = {}
        self._active = []
        self._low = {}
        self._biglow = len(G)
        self._graph = G

        # perform the Depth First Search
        GraphSearch.Searcher.__init__(self,G,GraphSearch.dfs())

        # clean up now-useless data structures
        del self._dfsnumber, self._activelen, self._active, self._low
Ejemplo n.º 4
0
def depthFirstSearch(problem):
    """
    Search the deepest nodes in the search tree first

    Your search algorithm needs to return a list of actions that reaches
    the goal.  Make sure to implement a graph search algorithm

    To get started, you might want to try some of these simple commands to
    understand the search problem that is being passed in:

    print "Start:", problem.getStartState()
    print "Is the start a goal?", problem.isGoalState(problem.getStartState())
    print "Start's successors:", problem.getSuccessors(problem.getStartState())
    """
    "*** YOUR CODE HERE ***"
    #util.raiseNotDefined()
    import GraphSearch
    return GraphSearch.graphSearch(problem, util.Stack())
Ejemplo n.º 5
0
def Forest(G):
    #check
    H = G.to_undirected()
    if G.number_of_edges() != H.number_of_edges():
        return (False)

#check to see if the undirected graph of G has any cycles
    nodes = H.nodes()
    #evaluate each component until either a cycle is found or all components are checked
    while (G.nodes()):
        #generate components starting in unexplored vertex
        H = G.subgraph(GraphSearch(G, nodes[0], 0)[0])
        #if a connected undirected graph has more than n - 1 edges it has a cycle
        if H.number_of_edges() > H.number_of_nodes() - 1:
            return (False)
        else:
            #remove all nodes in the component containing node[0] and update nodes
            for element in H.nodes():
                G.remove_node(element)


#all possibilities have been checked, so the graph must be a forest
    return (True)
Ejemplo n.º 6
0
    def run_search(self):
        start = str(self.sourceEdit.text())
        destination = str(self.dstEdit.text())
        start_coord = re.findall(r'\d+', start)
        destination_coord = re.findall(r'\d+', destination)

        result = GraphSearch.GraphSearch((int(start_coord[0]), int(start_coord[1])),
                                          (int(destination_coord[0]), int(destination_coord[1])),'path')
        self.map.mark_paths(result)
        self.statusConsole.clear()
        street_string_info = "\n".join(str(a) for a in self.street_info)
        self.statusConsole.insertPlainText(street_string_info)
        self.statusConsole.insertPlainText('\n\nDirections...\n\n')
        total_cost = 0
        for node in result:
            cost = node.stepCost
            total_cost += cost
            msgFormat = 'Walk from {} through {} to get to {}, Cost: {:.2f}\n'
            self.statusConsole.insertPlainText(msgFormat.format(node.Parent, get_street_name(
                node.Parent, node.State, self.street_info), node.State, cost))
        self.statusConsole.insertPlainText(
            '\nTotal Cost: {:.2f}'.format(total_cost) + '\n')
        self.statusConsole.insertPlainText(
            '\nRaw Result\n' + str(result) + '\n')
from EightPuzzle import *
from GraphSearch import *
from BFS import *
from DFS import *
from IDS import *

# create the problem model
eight_puzzle = EightPuzzle((1, 2, 3, 4, 5, 6, 0, 7, 8))  # requires 2 moves

# other examples of creating an 8-puzzle problem
#eight_puzzle = EightPuzzle((1, 2, 3, 4, 5, 7, 8, 6, 0)) #requires 12 moves
#eight_puzzle = EightPuzzle((1, 2, 3, 4, 5, 6, 7, 8, 0)) #start with solution
# eight_puzzle.shuffle(10) # make 10 moves to ensure the puzzle is in a solvable state, but mixed up a bit

# search using Graph Search
myGraphSearch = GraphSearch(eight_puzzle)
result_node = myGraphSearch.search()

print("GRAPH SEARCH")

if (result_node is None):
    print("No path found using graph search!")
else:
    print("Path:", result_node.path())
    print("Path Cost:", result_node.path_cost)
    print("Solution:", result_node.solution())
print("Nodes searched with graph search:", myGraphSearch.nodesSearched)
print("Time Spent with graph search:", myGraphSearch.timeSpent)

print("==============")
Ejemplo n.º 8
0
def BFTIterLinkedList(graph):
    gs = GraphSearch.GraphSearch()
    gs.BFTIter(graph)
Ejemplo n.º 9
0
def BFTRecLinkedList(graph):
    gs = GraphSearch.GraphSearch()
    gs.BFTRec(graph)
Ejemplo n.º 10
0
from copy import deepcopy
from GraphUtils import *
from GraphSearch import *

KB = readPaths('KB2.txt')

KB = parseKB(KB)

simpleKB = simplifyKB(
    KB)  #Turns the parsed KB into [A,B,...],[C,D,...] : A list of clauses
print(simpleKB)

thesis = ['R']  # What we are trying to prove  bu and e
toProve = negateList(
    deepcopy(thesis))  # Proof by contradiction -> not bu or not e
RULES = simpleKB  # The Rules we have
RULES.append(toProve)  # We append the negated thesis to it

y = Resolution(deepcopy(RULES))  # One step of the resolution algorithm

initialState = RULES  # Our initial state will be the rules
goalState = []  # Our goal state is the empty clause

SOLUTION = GraphSearch(deepcopy(initialState), deepcopy(goalState), 'logic')
if SOLUTION != 'FAIL!':
    print('Step ', 1, ': ', SOLUTION[0].State)
    for i in range(0, len(SOLUTION)):
        print('Step ', i + 2, ': ', SOLUTION[i].State)
else:
    print(SOLUTION)
Ejemplo n.º 11
0
from State import *
from Noeud import *
from GraphSearch import *
numberOfCannibals = 3
numberOfMissionairies = 3
boatSize = 2
start = Object(State(numberOfCannibals,numberOfMissionairies,0,0,True), None)
temp=GraphSearch(start,2)
for i in range(len(temp)):
    print(temp[i])
    if(i+1!=len(temp)):
        print("______Next______")