def tKrig(): ''' Kriging test ''' Loc, POIC, Prec = DataLoad.lcsv('TestData\GaugeLoc.csv', 'TestData\InterpPts.csv', 'TestData\Dataset.csv') Loc = numpy.array(Loc)/1000.0 POIC = numpy.array(POIC)/1000.0 SVExp, CovMea = Kriging.exp_semivariogram(Prec, Loc) xopt, ModOpt, VarFunArr = Kriging.theor_variogram(SVExp) Z, SP, ZAvg = Kriging.Krig(10.0, POIC, Loc, Prec, CovMea, ModOpt, xopt, VarFunArr,10 ,11, 'Ord') print Z print ZAvg return Z, ZAvg, CovMea
def animate(self, i): Z, T, F, W, WD = DataHandler.propagation( i, self.option, self.enteredWindSpeedValue, self.enteredWindDirectionValue, self.enteredTemperatureValue, self.enteredTrafficValue, self.enteredRainfallValue) xMesh, yMesh, zPrediction, Zi = Kriging.execute(X, Y, Z, i) self.fig.clf() subplot = self.fig.add_subplot(111) subplot.set_title(self.createTitle(self.option, i, T, F, W, WD)) subplContourf = subplot.imshow(backgroundImage, extent=[0, 90, 0, 60]) subplContourf = subplot.contourf(xMesh, yMesh, np.transpose(zPrediction), 50, cmap=newCmap, alpha=0.6, vmin=-80, vmax=190) subplContourf = subplot.scatter(X, Y, c=Zi, cmap=newCmap, vmin=0, vmax=80) colorbar = self.fig.colorbar(subplContourf, fraction=0.03) colorbar.set_label('Smog level') cursor = mplcursors.cursor(subplContourf, hover=True) cursor.connect( "add", lambda sel: sel.annotation.set_text(pointNames[sel.target.index])) if i == self.numberOfMeasurements - 1: self.animation = None self.pauseButton.config(text="Show again") self.dailySimButton["state"] = "normal" self.weeklySimButton["state"] = "normal"
pre = Preprocess(all_dat='../all_games.pkl', pca_model='../eco_full_pca.pkl') X, y = pre.ready_player_one(2) scale = MinMaxScaler((-1.,1.)) X = scale.fit_transform(X) from tqdm import tqdm file_address = 'p2_bfgs_sigma_alpha8.286TRUNCATED.json' with open(file_address, 'r') as f: best_obj, best_sig = json.load( f) f.close() # unit_sig = np.ones(31) # bounds = np.array(31*[[-1., 1.]]) # bestKrig = Kriging(best_sig, bounds=bounds) # bestKrig.fit(X,y) bounds = np.array(30*[[-1., 1.]]) num_ini_guess = 2 kriging_model = Kriging(best_sig, bounds=bounds, num_ini_guess=num_ini_guess) with Model() as model: # model specifications in PyMC3 are wrapped in a with-statement # Define likelihood likelihood = kriging_model.obj(l,a) with model: start = {'Intercept_logodds': np.array(-1.4488360894175776), 'sigma_log': np.array(-0.7958719902826098), 'x_logodds': np.array(-0.3564261325183015)} step = NUTS(scaling=start) # Instantiate MCMC sampling algorithm trace = sample(2000, step, start=start, progressbar=True) # draw 2000 posterior samples using NUTS sampling
from tqdm import tqdm file_address = 'p2_bfgs_sigma_alpha8.286TRUNCATED.json' with open(file_address, 'r') as f: best_obj, best_sig = json.load(f) f.close() # unit_sig = np.ones(31) # bounds = np.array(31*[[-1., 1.]]) # bestKrig = Kriging(best_sig, bounds=bounds) # bestKrig.fit(X,y) bounds = np.array(30 * [[-1., 1.]]) num_ini_guess = 2 kriging_model = Kriging(best_sig, bounds=bounds, num_ini_guess=num_ini_guess) with Model( ) as model: # model specifications in PyMC3 are wrapped in a with-statement # Define likelihood likelihood = kriging_model.obj(l, a) with model: start = { 'Intercept_logodds': np.array(-1.4488360894175776), 'sigma_log': np.array(-0.7958719902826098), 'x_logodds': np.array(-0.3564261325183015) } step = NUTS(scaling=start) # Instantiate MCMC sampling algorithm trace = sample( 2000, step, start=start,