Ejemplo n.º 1
0
def test_code():
    # Test in sample performance
    prices = get_prices(symbol=SYMBOL,
                        sd=IN_SAMPLE_DATES[0],
                        ed=IN_SAMPLE_DATES[1])
    # Strategy Learner
    st_learner = sl.StrategyLearner(verbose=False, impact=IMPACT)
    st_learner.addEvidence(symbol=SYMBOL,
                           sd=IN_SAMPLE_DATES[0],
                           ed=IN_SAMPLE_DATES[1],
                           sv=START_VAL)
    # Test in sample performance
    st_trades = st_learner.testPolicy(symbol=SYMBOL,
                                      sd=IN_SAMPLE_DATES[0],
                                      ed=IN_SAMPLE_DATES[1],
                                      sv=START_VAL)
    st_orders = st_learner.convert_trades_to_order(st_trades)
    st_portval = sim.compute_portvals(st_orders,
                                      start_val=START_VAL,
                                      commission=TRANSACTION_COMMISSION,
                                      impact=IMPACT,
                                      start_date=IN_SAMPLE_DATES[0],
                                      end_date=IN_SAMPLE_DATES[1])
    st_portval = st_learner.normalize_df(st_portval)
    st_cr, st_adr, st_sddr, st_sr = sim.get_portfolio_stats(st_portval)

    print_performance("Strategy Learner", st_cr, st_adr, st_sddr, st_sr,
                      st_portval)

    # Benchmark
    ben_portvals, ben_cr, ben_adr, ben_sddr, ben_sr = ms.benchmark(
        SYMBOL, IN_SAMPLE_DATES[0], IN_SAMPLE_DATES[1], START_VAL)
    print_performance("Benchmark", ben_cr, ben_adr, ben_sddr, ben_sr,
                      ben_portvals)

    # Manual strategy
    ms_trades = ms.testPolicy(SYMBOL, IN_SAMPLE_DATES[0], IN_SAMPLE_DATES[1],
                              START_VAL)
    ms_orders = ms.convert_trades_to_order(ms_trades)
    ms_portvals = ms.compute_portvals(df_orders=ms_orders,
                                      start_val=START_VAL,
                                      commission=TRANSACTION_COMMISSION,
                                      impact=IMPACT,
                                      start_date=IN_SAMPLE_DATES[0],
                                      end_date=IN_SAMPLE_DATES[1])
    ms_portvals = ms.normalize(ms_portvals)
    ms_cr, ms_adr, ms_sddr, ms_sr = ms.get_portfolio_stats(ms_portvals)
    print_performance("Manual Strategy", ms_cr, ms_adr, ms_sddr, ms_sr,
                      ms_portvals)

    plot_compare(ben_portvals, ms_portvals, st_portval)
Ejemplo n.º 2
0
def get_port_val_sl(impact, symbol, start_date, end_date, sv, commission=9.95):
    sl = StrategyLearner.StrategyLearner(impact=impact, commission=commission)
    sl.addEvidence(symbol=symbol,
                   sd=start_date,
                   ed=end_date,
                   sv=100000,
                   n_bins=5)

    df_trades_sl = sl.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)
    df_orders_sl, _ = ManualStrategy.generate_orders(df_trades_sl, symbol)
    port_vals_sl = ManualStrategy.compute_portvals(df_orders_sl,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    normed_port_sl = port_vals_sl / port_vals_sl.ix[0]

    return normed_port_sl
Ejemplo n.º 3
0
def experiment1():

    ms = ManualStrategy.ManualStrategy()
    sl = StrategyLearner.StrategyLearner()

    commission = 9.95
    impact = 0.005

    # in sample
    start_date = dt.datetime(2008, 1, 1)
    end_date = dt.datetime(2009, 12, 31)
    # dates = pd.date_range(start_date, end_date)
    symbol = 'JPM'

    sl.addEvidence(symbol=symbol,
                   sd=start_date,
                   ed=end_date,
                   sv=100000,
                   n_bins=5)

    df_trades_ms = ms.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)
    df_trades_sl = sl.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)

    # generate orders based on trades
    df_orders_ms, benchmark_orders = ManualStrategy.generate_orders(
        df_trades_ms, symbol)
    df_orders_sl, _ = ManualStrategy.generate_orders(df_trades_sl, symbol)

    port_vals_ms = ManualStrategy.compute_portvals(df_orders_ms,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    port_vals_sl = ManualStrategy.compute_portvals(df_orders_sl,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    #benchmark_orders.loc[benchmark_orders.index[1], 'Shares'] = 0

    benchmark_vals = ManualStrategy.compute_portvals(benchmark_orders,
                                                     sd=start_date,
                                                     ed=end_date,
                                                     start_val=100000,
                                                     commission=commission,
                                                     impact=impact)

    normed_port_ms = port_vals_ms / port_vals_ms.ix[0]
    normed_port_sl = port_vals_sl / port_vals_sl.ix[0]
    normed_bench = benchmark_vals / benchmark_vals.ix[0]

    dates = pd.date_range(start_date, end_date)
    prices_all = get_data([symbol], dates, addSPY=True, colname='Adj Close')
    prices = prices_all[symbol]  # only portfolio symbols

    # get indicators
    lookback = 14

    _, PSR = id.get_SMA(prices, lookback)
    _, _, bb_indicator = id.get_BB(prices, lookback)
    momentum = id.get_momentum(prices, lookback)

    # figure 5.
    plt.figure(figsize=(12, 6.5))
    top = plt.subplot2grid((5, 1), (0, 0), rowspan=3, colspan=1)
    bottom = plt.subplot2grid((5, 1), (3, 0), rowspan=2, colspan=1, sharex=top)

    # plot the Long or short action
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            plt.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            plt.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    top.xaxis_date()
    top.grid(True)
    top.plot(normed_port_sl, lw=2, color='red', label='Q-Learning Strategy')
    top.plot(normed_port_ms, lw=1.5, color='black', label='Manual Strategy')
    top.plot(normed_bench, lw=1.2, color='green', label='Benchmark')

    top.set_title(
        'Machine Learning Strategy (MLS), Manual Strategy (MS) - In Sample Analysis'
    )
    top.set_ylabel('Normalized Value')
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            top.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            top.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    bottom.plot(momentum, color='olive', lw=1, label="momentum")
    bottom.plot(PSR, color='purple', lw=1, label="PSR")
    #bottom.plot(bb_indicator, color='blue', lw=1, label="Bollinger")
    bottom.set_title('Indicators')

    bottom.axhline(y=-0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.legend()

    top.legend()
    top.axes.get_xaxis().set_visible(False)
    plt.xlim(start_date, end_date)

    filename = '01_MLS_insample.png'

    plt.savefig(filename)

    plt.close()

    port_cr_sl, port_adr_sl, port_stddr_sl, port_sr_sl = ManualStrategy.get_portfolio_stats(
        port_vals_sl)
    port_cr_ms, port_adr_ms, port_stddr_ms, port_sr_ms = ManualStrategy.get_portfolio_stats(
        port_vals_ms)
    bench_cr, bench_adr, bench_stddr, bench_sr = ManualStrategy.get_portfolio_stats(
        benchmark_vals)

    # Compare portfolio against benchmark
    print "=== Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) In Sample ==="
    print "Date Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of MLS: {}".format(port_sr_sl)
    print "Sharpe Ratio of MS: {}".format(port_sr_ms)
    print "Sharpe Ratio of BenchMark : {}".format(bench_sr)
    print
    print "Cumulative Return of MLS: {}".format(port_cr_sl)
    print "Cumulative Return of MS: {}".format(port_cr_ms)
    print "Cumulative Return of Benchmark : {}".format(bench_cr)
    print
    print "Standard Deviation of MLS: {}".format(port_stddr_sl)
    print "Standard Deviation of MS: {}".format(port_stddr_ms)
    print "Standard Deviation of Benchmark : {}".format(bench_stddr)
    print
    print "Average Daily Return of MLS: {}".format(port_adr_sl)
    print "Average Daily Return of MS: {}".format(port_adr_ms)
    print "Average Daily Return of BenchMark : {}".format(bench_adr)
    print
    print "Final MLS Portfolio Value: {}".format(port_vals_sl[-1])
    print "Final MS Portfolio Value: {}".format(port_vals_ms[-1])
    print "Final Benchmark Portfolio Value: {}".format(benchmark_vals[-1])
    print

    # ========================
    # OUT OF SAMPLE Analysis
    # ========================
    start_date = dt.datetime(2010, 1, 1)
    end_date = dt.datetime(2011, 12, 31)
    # dates = pd.date_range(start_date, end_date)
    symbol = 'JPM'

    df_trades_ms = ms.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)
    df_trades_sl = sl.testPolicy(symbol=symbol,
                                 sd=start_date,
                                 ed=end_date,
                                 sv=100000)

    # generate orders based on trades
    df_orders_ms, benchmark_orders = ManualStrategy.generate_orders(
        df_trades_ms, symbol)
    df_orders_sl, _ = ManualStrategy.generate_orders(df_trades_sl, symbol)

    port_vals_ms = ManualStrategy.compute_portvals(df_orders_ms,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    port_vals_sl = ManualStrategy.compute_portvals(df_orders_sl,
                                                   start_val=100000,
                                                   sd=start_date,
                                                   ed=end_date,
                                                   commission=commission,
                                                   impact=impact)
    #benchmark_orders.loc[benchmark_orders.index[1], 'Shares'] = 0

    benchmark_vals = ManualStrategy.compute_portvals(benchmark_orders,
                                                     sd=start_date,
                                                     ed=end_date,
                                                     start_val=100000,
                                                     commission=commission,
                                                     impact=impact)

    normed_port_ms = port_vals_ms / port_vals_ms.ix[0]
    normed_port_sl = port_vals_sl / port_vals_sl.ix[0]
    normed_bench = benchmark_vals / benchmark_vals.ix[0]

    dates = pd.date_range(start_date, end_date)
    prices_all = get_data([symbol], dates, addSPY=True, colname='Adj Close')
    prices = prices_all[symbol]  # only portfolio symbols

    # get indicators
    lookback = 14

    _, PSR = id.get_SMA(prices, lookback)
    _, _, bb_indicator = id.get_BB(prices, lookback)
    momentum = id.get_momentum(prices, lookback)

    # figure 5.
    plt.figure(figsize=(12, 6.5))
    top = plt.subplot2grid((5, 1), (0, 0), rowspan=3, colspan=1)
    bottom = plt.subplot2grid((5, 1), (3, 0), rowspan=2, colspan=1, sharex=top)

    # plot the Long or short action
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            plt.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            plt.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    top.xaxis_date()
    top.grid(True)
    top.plot(normed_port_sl, lw=2, color='red', label='Q-Learning Strategy')
    top.plot(normed_port_ms, lw=1.5, color='black', label='Manual Strategy')
    top.plot(normed_bench, lw=1.2, color='green', label='Benchmark')

    top.set_title(
        'Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) - Out Sample Analysis'
    )
    top.set_ylabel('Normalized Value')
    for index, marks in df_trades_sl.iterrows():
        if marks['Trades'] > 0:
            top.axvline(x=index, color='blue', linestyle='dashed', alpha=.9)
        elif marks['Trades'] < 0:
            top.axvline(x=index, color='black', linestyle='dashed', alpha=.9)
        else:
            pass

    bottom.plot(momentum, color='olive', lw=1, label="momentum")
    bottom.plot(PSR, color='purple', lw=1, label="PSR")
    #bottom.plot(bb_indicator, color='blue', lw=1, label="Bollinger")
    bottom.set_title('Indicators')

    bottom.axhline(y=-0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0, color='grey', linestyle='--', alpha=0.5)
    bottom.axhline(y=0.2, color='grey', linestyle='--', alpha=0.5)
    bottom.legend()

    top.legend()
    top.axes.get_xaxis().set_visible(False)
    plt.xlim(start_date, end_date)

    filename = '02_MLS_outsample.png'

    plt.savefig(filename)

    plt.close()

    port_cr_sl, port_adr_sl, port_stddr_sl, port_sr_sl = ManualStrategy.get_portfolio_stats(
        port_vals_sl)
    port_cr_ms, port_adr_ms, port_stddr_ms, port_sr_ms = ManualStrategy.get_portfolio_stats(
        port_vals_ms)
    bench_cr, bench_adr, bench_stddr, bench_sr = ManualStrategy.get_portfolio_stats(
        benchmark_vals)

    # Compare portfolio against benchmark
    print "=== Machine Learning Strategy (MLS) V.S. Manual Strategy (MS) OUT Sample ==="
    print "Date Range: {} to {}".format(start_date, end_date)
    print
    print "Sharpe Ratio of MLS: {}".format(port_sr_sl)
    print "Sharpe Ratio of MS: {}".format(port_sr_ms)
    print "Sharpe Ratio of BenchMark : {}".format(bench_sr)
    print
    print "Cumulative Return of MLS: {}".format(port_cr_sl)
    print "Cumulative Return of MS: {}".format(port_cr_ms)
    print "Cumulative Return of Benchmark : {}".format(bench_cr)
    print
    print "Standard Deviation of MLS: {}".format(port_stddr_sl)
    print "Standard Deviation of MS: {}".format(port_stddr_ms)
    print "Standard Deviation of Benchmark : {}".format(bench_stddr)
    print
    print "Average Daily Return of MLS: {}".format(port_adr_sl)
    print "Average Daily Return of MS: {}".format(port_adr_ms)
    print "Average Daily Return of BenchMark : {}".format(bench_adr)
    print
    print "Final MLS Portfolio Value: {}".format(port_vals_sl[-1])
    print "Final MS Portfolio Value: {}".format(port_vals_ms[-1])
    print "Final Benchmark Portfolio Value: {}".format(benchmark_vals[-1])
    print