Ejemplo n.º 1
0
 def tune_rf(self, X, y):
     msg.print_line()
     msg.tune_rf_message()
     estimators = None
     features = None
     leaf = None
     msg.loading_message()
     rf_params = self.mysql_cn.read('select * from params_rf;')
     n_estimators = rf_params['n_estimators'].tolist()
     max_features = rf_params['max_features'].tolist()
     min_samples_leaf = rf_params['min_samples_leaf'].tolist()
     if not n_estimators or not max_features or not min_samples_leaf:
         msg.tuning_message()
         param_grid = {
             'n_estimators': [10],
             'max_features': ['auto', 'sqrt', 'log2'],
             'min_samples_leaf': [1, 5, 10]
         }
         CV_rf = GridSearchCV(estimator=RF(), param_grid=param_grid, cv=5)
         CV_rf.fit(X, y)
         rf_param = CV_rf.best_params_
         n_estimators = rf_param['n_estimators']
         max_features = rf_param['max_features']
         min_samples_leaf = rf_param['min_samples_leaf']
         msg.print_rf_params(n_estimators, max_features, min_samples_leaf)
         msg.insert_message()
         self.mysql_cn.insert_update("INSERT INTO params_rf(n_estimators, max_features, min_samples_leaf) "
                                     "VALUES(%d, '%s', %d)" % (n_estimators, max_features, min_samples_leaf))
         return (n_estimators, max_features, min_samples_leaf)
     elif self.check_tune[0]:
         msg.tuning_message()
         param_grid = {
             'n_estimators': [10, 100],
             'max_features': ['auto', 'sqrt', 'log2'],
             'min_samples_leaf': [1, 5, 10]
         }
         CV_rf = GridSearchCV(estimator=RF(), param_grid=param_grid, cv=5)
         CV_rf.fit(X, y)
         rf_param = CV_rf.best_params_
         n_estimators = rf_param['n_estimators']
         max_features = rf_param['max_features']
         min_samples_leaf = rf_param['min_samples_leaf']
         msg.print_rf_params(n_estimators, max_features, min_samples_leaf)
         msg.update_message()
         self.mysql_cn.insert_update(
             "UPDATE params_rf SET n_estimators = %d, max_features = '%s', min_samples_leaf = %d"
                     % (n_estimators, max_features, min_samples_leaf))
         return (n_estimators, max_features, min_samples_leaf)
     else:
         msg.loading_message()
         new_rf_params = self.mysql_cn.read('select * from params_rf;')
         estimators = new_rf_params['n_estimators'].tolist()
         features = new_rf_params['max_features'].tolist()
         leaf = new_rf_params['min_samples_leaf'].tolist()
         n_estimators = estimators[0]
         max_features = features[0]
         min_samples_leaf = leaf[0]
         msg.print_rf_params(n_estimators, max_features, min_samples_leaf)
         return (n_estimators, max_features, min_samples_leaf)
Ejemplo n.º 2
0
 def tune_svm(self, X, y):
     msg.print_line()
     msg.tune_svm_message()
     C_range = np.logspace(-2, 2, 9)
     gamma_range = np.logspace(-2, 2, 9)
     param_grid = [{'kernel': ['rbf'], 'gamma': gamma_range, 'C': C_range}]
     msg.loading_message()
     svm_params = self.mysql_cn.read('select * from params_svm;')
     kernel = svm_params['kernel'].tolist()
     c = svm_params['c'].tolist()
     gamma = svm_params['gamma'].tolist()
     if not kernel:
         msg.tuning_message()
         CV_svm = GridSearchCV(SVC(), param_grid=param_grid, cv=5)
         CV_svm.fit(X, y)
         svm_params = CV_svm.best_params_
         kernel = svm_params['kernel']
         c = svm_params['C']
         gamma = svm_params['gamma']
         msg.print_svm_params(kernel, c, gamma)
         msg.insert_message()
         self.mysql_cn.insert_update("INSERT INTO params_svm(kernel, c, gamma) "
                                     "VALUES('%s', %s, %s)" % (kernel, c, gamma))
         return (kernel, c, gamma)
     elif self.check_tune[0]:
         msg.tuning_message()
         CV_svm = GridSearchCV(SVC(), param_grid=param_grid, cv=5)
         CV_svm.fit(X, y)
         svm_params = CV_svm.best_params_
         kernel = svm_params['kernel']
         c = svm_params['C']
         gamma = svm_params['gamma']
         msg.print_svm_params(kernel, c, gamma)
         msg.update_message()
         self.mysql_cn.insert_update(
             "UPDATE params_svm SET kernel = '%s', c = %s, gamma = %s"
             % (kernel, c, gamma))
         return (kernel, c, gamma)
     else:
         msg.loading_message()
         new_svm_params = self.mysql_cn.read('select * from params_svm;')
         kernel = new_svm_params['kernel'].tolist()
         c = new_svm_params['c'].tolist()
         gamma = new_svm_params['gamma'].tolist()
         msg.print_svm_params(kernel[0], c[0], gamma[0])
         return (kernel[0], c[0], gamma[0])
Ejemplo n.º 3
0
 def tune_knn(self, X, y):
     msg.tune_knn_message()
     k_value = None
     msg.loading_message()
     k_params = self.mysql_cn.read('select * from params_knn;')
     k = k_params['k_value'].tolist()
     if not k:
         msg.tuning_message()
         range_k = list(range(1, 31))
         param_grid = {
             'n_neighbors': range_k
         }
         CV_knn = GridSearchCV(estimator=KNN(), param_grid=param_grid, cv=10)
         CV_knn.fit(X, y)
         k_value_param = CV_knn.best_params_
         k_value = k_value_param['n_neighbors']
         k = k_value
         msg.print_knn_params(k)
         msg.insert_message()
         self.mysql_cn.insert_update("INSERT INTO params_knn(k_value) VALUES(%d)" % k_value)
         return k
     elif self.check_tune[0]:
         msg.tuning_message()
         range_k = list(range(1, 31))
         param_grid = {
             'n_neighbors': range_k
         }
         CV_knn = GridSearchCV(estimator=KNN(), param_grid=param_grid, cv=10)
         CV_knn.fit(X, y)
         k_value_param = CV_knn.best_params_
         k_value = k_value_param['n_neighbors']
         k = k_value
         msg.print_knn_params(k)
         msg.update_message()
         self.mysql_cn.insert_update("UPDATE params_knn SET k_value=%d" % k_value)
         return k
     else:
         msg.loading_message()
         new_k = self.mysql_cn.read('select * from params_knn;')
         k_value = new_k['k_value'].tolist()
         k = k_value[0]
         msg.print_knn_params(k)
         return k