Ejemplo n.º 1
0
def get_tablePK(table, cursor):
    cursor.execute("SELECT * FROM " + table)
    df1 = uniFormatTable(pd.DataFrame(cursor.fetchall()))
    df2 = pd.read_csv(nfv.getPath(finalpath, table + ".csv"),
                      float_precision="high")
    df2 = uniFormatDF(df2)
    df1 = np.array(df1)
    pk = np.array([])
    for index, row in df2.iterrows():
        if (serviceTable(table) == False):
            for row2 in df1:
                if ((np.equal(np.array(row), np.array(row2[1:]))).all()):
                    pk = np.append(pk, row2[0])
        else:
            if (isEducationalCenter(table)):
                for row2 in df1:
                    if ((np.equal(np.array(row[:-2]), row2[1:-3])).all()):
                        pk = np.append(pk, row2[0])
            else:
                if (isOtherCenter(table) == False):
                    for row2 in df1:
                        if ((np.equal(np.array(row[:-1]), row2[1:-2])).all()):
                            pk = np.append(pk, row2[0])
                else:
                    for row2 in df1:
                        if ((np.equal(np.array(row[:-1]), row2[1:-1])).all()):
                            pk = np.append(pk, row2[0])
    return pd.DataFrame(pk)
Ejemplo n.º 2
0
def makeNMtable(elem, cursor):
    x = nm.getTableName(elem)
    if (nm.is_non_zero_file(nfv.getPath(finalpath, x + ".csv"))):
        if (nm.specialTable(elem) == False):
            tablePK = nm.get_tablePK(x, cursor)
            communityPK = nm.get_communityPK(elem, cursor)
            arrayCommunity = np.array([])
            for index, row in tablePK.iterrows():
                arrayCommunity = np.append(arrayCommunity, communityPK[0][0])
            nmTableFK = nt.concatDF(tablePK, pd.DataFrame(arrayCommunity))
            if (os.path.isfile(finalpath + "/" + elem + ".csv")):
                if (nm.is_non_zero_file(nfv.getPath(finalpath,
                                                    elem + ".csv"))):
                    df = np.array(pd.read_csv(finalpath + "/" + elem + ".csv"))
                    df = pd.DataFrame(df)
                    nmTableFK = nt.concatDF(nmTableFK, df)
        else:
            nmTableFK = nm.get_specialTable(x, elem, cursor)
        nt.mkCSV(nmTableFK, elem + ".csv")
Ejemplo n.º 3
0
def NMsqlBody(communityType, tablesList, f, cursor, query):
    otherTable = np.array([])
    for row in tablesList:
        for elem in row:
            if ((communityType == 0 and elem.find("_has_camp") == -1)
                    or (communityType == 1)):
                if (nmw.NMTable(elem)):
                    x = nmt.getTableName(elem)
                    if (nmt.is_non_zero_file(nfv.getPath(
                            finalpath, x + ".csv"))):
                        if (nmw.specialTable(elem) == False):
                            f.write(query.getQuery1() + elem + ".csv'\n" +
                                    query.getQuery2() + " " + elem + "\n" +
                                    query.getQuery3() + "\n" +
                                    query.getQuery4() + "\n")
                            cursor.execute("SHOW columns FROM " + elem)
                            columnList = cursor.fetchall()
                            string = np.array([], dtype=str)
                            for column in columnList:
                                if (nmw.validColumn(column)):
                                    string = np.append(string, column[0])
                            f.write("    (")
                            for column in string:
                                if (column != string[-1]):
                                    f.write("@" + column + ",")
                                else:
                                    f.write("@" + column + ")\n")
                            f.write("SET ")
                            for column in string:
                                if (column != string[-1]):
                                    if (column == string[0]):
                                        f.write(column + " = NULLIF(@" +
                                                column + ",''),\n")
                                    else:
                                        f.write("    " + column +
                                                " = NULLIF(@" + column +
                                                ",''),\n")
                                else:
                                    if (column == string[0]):
                                        f.write(column + " = NULLIF(@" +
                                                column + ",'');\n\n")
                                    else:
                                        f.write("    " + column +
                                                " = NULLIF(@" + column +
                                                ",'');\n\n")
                        else:
                            otherTable = np.append(otherTable, elem)

    for elem in otherTable:
        if (elem == "inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
            ):
            nmw.writteExpanPlan(query, f, cursor, communityType)
Ejemplo n.º 4
0
def get_specialTableFKs(table, tableHas, x, y, cursor):
    cursor.execute("SELECT * FROM " + table)
    df1 = uniFormatTable(pd.DataFrame(cursor.fetchall()))
    df2 = pd.read_csv(nfv.getPath(finalpath, tableHas + ".csv"),
                      header=None,
                      float_precision="high")
    df2 = uniFormatDF(df2)
    df1 = np.array(df1)
    pk = np.array([])
    arrayCommunity = np.array([])
    communityPK = get_communityPK(tableHas, cursor)
    for index, row in df2.iterrows():
        for row2 in df1:
            if (row[x] == row2[1]):
                pk = np.append(pk, row2[0])
    pk = pd.DataFrame(pk)
    for index, row in pk.iterrows():
        arrayCommunity = np.append(arrayCommunity, communityPK[0][0])
    arrayCommunity = pd.DataFrame(arrayCommunity)
    result = nt.concatDF(pk, nt.concatDF(arrayCommunity, df2))
    result = result.drop(result.columns[[y]], axis=1)
    return result
Ejemplo n.º 5
0
 def __init__(self, communityType):
     Bibliography = pd.read_excel(
         nfv.getPath(nfv.mainpath, "Bibliography_120220.xlsx"))
     Bibliography = nfv.fixBibliography(Bibliography)
     self.Bibliography = nfv.setDataByIndex(Bibliography, communityType)
     self.Entities = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Entities_Interview_results.csv"),
                     float_precision="high"), communityType)
     self.LocalLeaders = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Local_leaders_v3_results.csv"),
                     float_precision="high"), communityType)
     self.HouseHold = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Survey_household_v6_results.csv"),
                     float_precision="high"), communityType)
     self.WomenGroup = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Women_Focus_Group2_results.csv"),
                     float_precision="high"), communityType)
     self.SanitationInfra = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_V1_0_Sanitation_Infrastructre_results.csv"),
                     float_precision="high"), communityType)
     self.Priorities = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Priorities_v3_results.csv"),
                     float_precision="high"), communityType)
     self.GeneralForm = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_General_form_v3_results.csv"),
                     float_precision="high"), communityType)
     self.PublicSpace = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Public_Space_results.csv"),
                     float_precision="high"), communityType)
     self.WaterInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Water_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.SanitationInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_V1_0_Sanitation_Infrastructre_results.csv"),
                     float_precision="high"), communityType)
     self.WasteManagementInf = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0_Waste_Management_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.EnergyINF = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Energy_Infrastructure_results.csv"),
                     float_precision="high"), communityType)
     self.Business = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA1_0_Business_surveys_v3_results.csv"),
                     float_precision="high"), communityType)
     self.MobilityINF = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0__Transport_servicesaccess_points_results.csv"),
                     float_precision="high"), communityType)
     self.ComunalServices = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Communal_Services_results.csv"),
                     float_precision="high"), communityType)
     self.GeneralCitizen = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath,
             "NAUTIA_1_0_General_Citizen_Focus_Group_results.csv"),
                     float_precision="high"), communityType)
     self.Shelter = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(nfv.mainpath,
                                 "NAUTIA_1_0_Shelter_results.csv"),
                     float_precision="high"), communityType)
     self.FarmyardCrop = nfv.setDataByIndex(
         pd.read_csv(nfv.getPath(
             nfv.mainpath, "NAUTIA_1_0_Farmyard_and_Crops_results.csv"),
                     float_precision="high"), communityType)
Ejemplo n.º 6
0
def generalData(Bibliography):
    df1 = nfv.dfFix(Bibliography, "Mujeres menores de 5 años (%)",
                    "Total population")
    df2 = nfv.dfFix(Bibliography, "Growth rate of populatoin (%)", "Culture")
    GD_Demography = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Demography, "GD_Demography.csv")

    GD_Ethnicgroup = nfv.dfFix(Bibliography, "Ethnich group 1", "Religion").T
    nt.mkCSV(GD_Ethnicgroup, "GD_Ethnicgroup.csv")

    df1 = nfv.dfFix(Bibliography, "Parliamentary republic",
                    "Territorial and Urbanistic")
    GD_Government = df1
    GD_Government = GD_Government.isin(["Si"])
    GD_Government = GD_Government.any(
    )  #Lista con indice de columna y True si un contiene un True o False en caso contrario
    GD_Government = list(
        GD_Government[GD_Government == True].index)  #lista de indices con true
    GD_Government = pd.DataFrame(GD_Government)
    nt.mkCSV(GD_Government, "GD_Government.csv")

    GD_Economy = nfv.dfFix(Bibliography, "Agriculture (%)", "Government")
    nt.mkCSV(GD_Economy, "GD_Economy.csv")

    df1 = nfv.dfFix(Bibliography, "Urban population (%)", "Population density")
    df2 = nfv.dfFix(Bibliography, "Urban (inhabitants/hectares)",
                    "Infrastructures")
    GD_Urbanism = nt.concatDF(df1, df2)
    nt.mkCSV(GD_Urbanism, "GD_Urbanism.csv")

    df1 = nfv.dfFix(Bibliography, "Rural agua (%)",
                    "Access to improved sanitation")
    df2 = nfv.dfFix(Bibliography, "Rural saneamiento(%)",
                    "Access to electricity")
    df3 = nfv.dfFix(Bibliography, "Rural electricidad (%)",
                    "Matrix of electricity generation")
    GD_Infrastructure = nt.concatDF(nt.concatDF(df1, df2), df3)
    nt.mkCSV(GD_Infrastructure, "GD_Infrastructure.csv")

    GD_ElectricGenerationMix = nfv.dfFix(Bibliography, "Hydropower (%)",
                                         "High voltage (kV)")
    nt.mkCSV(GD_ElectricGenerationMix, "GD_ElectricGenerationMix.csv")

    GD_ServiceAccess = nfv.dfFix(Bibliography, "Illiteracy rate (%)",
                                 "Shelter")
    nt.mkCSV(GD_ServiceAccess, "GD_ServiceAccess.csv")

    GD_Shelter = nfv.dfFix(Bibliography, "Slum population rate (%)",
                           "SPECIFIC INFORMATION - SETTLEMENTS LEVEL")
    nt.mkCSV(GD_Shelter, "GD_Shelter.csv")

    Comun = pd.read_excel(nfv.getPath(nt.mainpath, "Bibliography_120220.xlsx"))
    Comun = nfv.fixBibliography(Comun)

    GD_Religion = nfv.dfFix(Comun, "Religion 1", "Language")
    df1 = nfv.dropRow(GD_Religion, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Religion, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Religion = pd.DataFrame(np_array3)
    GD_Religion = GD_Religion.transpose()
    GD_Religion = GD_Religion[0].unique()
    GD_Religion = pd.DataFrame(GD_Religion)
    GD_Religion = GD_Religion.dropna()
    nt.mkCSV(GD_Religion, "GD_Religion.csv")

    GD_Language = nfv.dfFix(Comun, "Language 1", "Economy and well-being")
    df1 = nfv.dropRow(GD_Language, 1)
    np_array1 = np.array(df1)
    df2 = nfv.dropRow(GD_Language, 0)
    np_array2 = np.array(df2)
    np_array3 = np.concatenate((np_array1, np_array2), axis=1)
    GD_Language = pd.DataFrame(np_array3)
    GD_Language = GD_Language.transpose()
    GD_Language = GD_Language[0].unique()
    GD_Language = pd.DataFrame(GD_Language)
    GD_Language = GD_Language.dropna()
    nt.mkCSV(GD_Language, "GD_Language.csv")
Ejemplo n.º 7
0
def writteExpanPlan(query, f, cursor, communityType):
    Entities = nfv.setDataByIndex(
        pd.read_csv(nfv.getPath(mainpath,
                                "NAUTIA_1_0_Entities_Interview_results.csv"),
                    float_precision="high"), communityType)
    inf_expandplanbeneficiaries = nfv.dfFix(Entities,
                                            "ENERGY:Covered_services",
                                            "ENERGY:Power_failure")
    inf_expandplanbeneficiaries = nt.separateValues(
        inf_expandplanbeneficiaries)
    cursor.execute("SELECT * FROM inf_expandplanbeneficiaries")
    array = np.array(cursor.fetchall())
    pk = np.array([])
    for row in array:
        for row2 in np.array(inf_expandplanbeneficiaries):
            for elem in row2:
                if (row[1] == elem):
                    pk = np.append(pk, elem)
    cursor.execute(
        "SELECT idINF_EnergyInfrastructure FROM INF_EnergyInfrastructure  ORDER BY idINF_EnergyInfrastructure DESC LIMIT 1"
    )
    pkInf = np.array(cursor.fetchall())
    cursor.execute(
        "SELECT Community_idCommunity FROM INF_EnergyInfrastructure  ORDER BY Community_idCommunity DESC LIMIT 1"
    )
    fkInf = np.array(cursor.fetchall())
    v1 = v2 = np.array([])
    for elem in pk:
        v1 = np.append(v1, pkInf)
        v2 = np.append(v2, fkInf)
    result = nt.concatDF(pd.DataFrame(pk),
                         nt.concatDF(pd.DataFrame(v1), pd.DataFrame(v2)))
    nt.mkCSV(result,
             "inf_expandplanbeneficiaries_has_inf_energyinfrastructure.csv")
    cursor.execute(
        "SHOW columns FROM inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
    )
    columnList = cursor.fetchall()
    table = "inf_expandplanbeneficiaries_has_inf_energyinfrastructure"
    f.write(query.getquery1() + table + ".csv'\n" + query.getquery2() + " " +
            table + "\n" + query.getquery3() + "\n" + query.getquery4() + "\n")
    pk = True
    string = np.array([], dtype=str)
    for column in columnList:
        if (pk):
            pk = False
        else:
            string = np.append(string, column[0])
    f.write("    (")
    for column in string:
        if (column != string[-1]):
            f.write("@" + column + ",")
        else:
            f.write("@" + column + ")\n")
    f.write("SET ")
    for column in string:
        if (column != string[-1]):
            if (column == string[0]):
                f.write(column + " = NULLIF(@" + column + ",''),\n")
            else:
                f.write("    " + column + " = NULLIF(@" + column + ",''),\n")
        else:
            if (column == string[0]):
                f.write(column + " = NULLIF(@" + column + ",'');\n\n")
            else:
                f.write("    " + column + " = NULLIF(@" + column + ",'');\n\n")
Ejemplo n.º 8
0
GD_Infrastructure = nt.concatDF(nt.concatDF(df1, df2), df3)
nt.mkCSV(GD_Infrastructure, "GD_Infrastructure.csv")

GD_ElectricGenerationMix = nfv.dfFix(Bibliography, "Hydropower (%)",
                                     "High voltage (kV)")
nt.mkCSV(GD_ElectricGenerationMix, "GD_ElectricGenerationMix.csv")

GD_ServiceAccess = nfv.dfFix(Bibliography, "Illiteracy rate (%)", "Shelter")
nt.mkCSV(GD_ServiceAccess, "GD_ServiceAccess.csv")

GD_Shelter = nfv.dfFix(Bibliography, "Slum population rate (%)",
                       "SPECIFIC INFORMATION - SETTLEMENTS LEVEL")
nt.mkCSV(GD_Shelter, "GD_Shelter.csv")

#%%COMMUN DATA
Comun = pd.read_excel(nfv.getPath(nt.mainpath, "Bibliography_120220.xlsx"))
Comun = nfv.fixBibliography(Comun)

GD_Religion = nfv.dfFix(Comun, "Religion 1", "Language")
df1 = nfv.dfFix(GD_Religion, 1)
np_array1 = np.array(df1)
df2 = nfv.dfFix(GD_Religion, 0)
np_array2 = np.array(df2)
np_array3 = np.concatenate((np_array1, np_array2), axis=1)
GD_Religion = pd.DataFrame(np_array3)
GD_Religion = GD_Religion.transpose()
GD_Religion = GD_Religion[0].unique()
GD_Religion = pd.DataFrame(GD_Religion)
GD_Religion = GD_Religion.dropna()
nt.mkCSV(GD_Religion, "GD_Religion.csv")