Ejemplo n.º 1
0
def cn_line_thickness(plot, val=0., factor=2.):
    ''' Increases the thickness of contour lines corresponding to a list of
    values

    cn_line_thickness(contour, val=0., factor=2.)

    plot : plot Id of the plot to modify

    val : scalar or list of values, which contour lines should be modified.

    factor : scaling factor for line thickness
    '''
    cnLevels = ngl.get_float_array(plot, "cnLevels")
    cnLineThicknesses = ngl.get_float_array(plot, "cnLineThicknesses")

    try:
        (v for v in val)
    except TypeError:
        val = [val]

    for i, thickness in enumerate(cnLineThicknesses[:]):
        if cnLevels[i] in val:
            cnLineThicknesses[i] = thickness * factor

    rlist = {"cnMonoLineThickness": False,
             "cnLineThicknesses": cnLineThicknesses}
    _set_values(plot, rlist)
Ejemplo n.º 2
0
def grid_wind(rs):
    """
    Grid winds based on u and v components
    @param rs array of dicts
    @return uwnd, vwnd
    """
    lats = []
    lons = []
    udata = []
    vdata = []
    for row in rs:
        if row['sknt'] is None or row['drct'] is None:
            continue
        # mps
        u,v = mesonet.uv( row['sknt'] / 0.514, row['drct'] )
        if v is not None:
            lats.append(  nt.sts[row['station']]['lat'] )
            lons.append(  nt.sts[row['station']]['lon'] )
            vdata.append( v )
            udata.append( u )
            
    if len(vdata) < 4:
        print "No wind data at all for time: %s" % (ts,)   
        return None
    
    ugrid = Ngl.natgrid(lons, lats, udata, iemre.XAXIS, iemre.YAXIS)
    vgrid = Ngl.natgrid(lons, lats, vdata, iemre.XAXIS, iemre.YAXIS)
    if ugrid is not None:
        ugt = ugrid.transpose()
        vgt = vgrid.transpose()
        return ugt, vgt
    else:
        return None, None
Ejemplo n.º 3
0
def lb_format_labels(plot, fmt, minmax=None):
    '''Applies a formatting to the lables of a label bar

    lb_format_labels(plot, fmt, minmax=None)

    plot : plot id of object that controlls the lable bar

    fmt : formatting string

    minmax : values of the maximum and minimum. Required, if cnLabelBarEndStyle
    is set to IncludeMinMaxLabels. If not provided in this case, a ValueError
    will be raised.
    '''
    levels = [float(s) for s in ngl.get_string_array(plot, "cnLevels")]
    labels = [fmt % lev for lev in levels]
    if ngl.get_string(plot, "cnLabelBarEndStyle") == "IncludeMinMaxLabels":
        if not minmax:
            raise ValueError("You need to provide minmax,"
                           + " since cnLabelBarEndStyle is set to "
                           + "IncludeMinMaxLabels!")
        minlabel = [fmt % minmax[0]]
        minlabel.extend(labels)
        labels = minlabel
        labels.append(fmt % minmax[1])
    rlist = {"cnExplicitLabelBarLabelsOn": True,
             "lbLabelStrings": labels}
    _set_values(plot, rlist)
Ejemplo n.º 4
0
 def _draw_main_title(self, wks, res):
     """Draw a title string above the panel plot."""
     # A panel title is specified using the panel resources.
     ngl_panel_title_string = getattr(res, 'nglPanelTitleString', None)
     if ngl_panel_title_string is not None:
         # If a panel title is requested then it first needs to be parsed
         # for newlines. This allows a multi-line title to be properly
         # centered automatically.
         panel_titles = reversed(
                 [p.strip() for p in ngl_panel_title_string.split('\n')])
         # Create resources for displaying the text.
         txres = Ngl.Resources()
         txres.txFontHeightF = getattr(res, 'nglPanelTitleFontHeightF',
                 defaults['fontheight']['title'])
         txres.txFont = getattr(res, 'nglPanelTitleFont', 
                 defaults['font']['title'])
         txres.txJust = 'BottomCenter'
         # Work out the center coordinate of the title, this is the same
         # for each line of a multi-line title.
         title_x = self.panel_center_x + getattr(res,
                 'nglPanelTitleOffsetXF', 0.)
         for i, t in enumerate(panel_titles):
             # For each line of a multi-line title (just one for a single
             # line title) work out the y coordinate and then draw the text
             # on the workstation.
             title_y = self.panel_y0 + 0.04 + \
                     (i+ (i * 0.5)) * txres.txFontHeightF
             Ngl.text_ndc(wks, t, title_x, title_y, txres)
Ejemplo n.º 5
0
def estimate_hilo( ts ):
    """
    Estimate the High and Low Temperature based on gridded data
    """
    # Query Obs
    highs = []
    lows = []
    lats = []
    lons = []
    icursor.execute("""
       SELECT x(s.geom) as lon, y(s.geom) as lat, max_tmpf, min_tmpf
       from summary_%s c, stations s WHERE day = '%s' and s.network in ('AWOS','IA_ASOS', 'MN_ASOS', 'WI_ASOS', 
       'IL_ASOS', 'MO_ASOS',
        'KS_ASOS', 'NE_ASOS', 'SD_ASOS', 'ND_ASOS', 'KY_ASOS', 'MI_ASOS',
        'OH_ASOS') and c.iemid = s.iemid
       and max_tmpf > -90 and min_tmpf < 90""" % (ts.year, ts.strftime("%Y-%m-%d")))
    for row in icursor:
        lats.append( row['lat'] )
        lons.append( row['lon'] )
        highs.append( row['max_tmpf'] )
        lows.append( row['min_tmpf'] )

    # Create the analysis
    highA = Ngl.natgrid(lons, lats, highs, iemre.XAXIS, iemre.YAXIS)
    lowA = Ngl.natgrid(lons, lats, lows, iemre.XAXIS, iemre.YAXIS)

    for id in nt.sts.keys():
        nt.sts[id]['high'] = highA[nt.sts[id]['gridi'], nt.sts[id]['gridj']]
        nt.sts[id]['low'] = lowA[nt.sts[id]['gridi'], nt.sts[id]['gridj']]
Ejemplo n.º 6
0
 def _get_plot_dimensions(self, plots, res):
     """Get the dimensions of the plots to be panelled."""
     # Select the index of the plot to get the size from.
     base_plot = getattr(res, 'nglPanelScalePlotIndex', 0)
     pwidth = Ngl.get_float(plots[base_plot], 'vpWidthF')
     pheight = Ngl.get_float(plots[base_plot], 'vpHeightF')
     return pwidth, pheight
Ejemplo n.º 7
0
def vpbox(wks):
    """ Draw a box around the viewport! """
    xbox = [0.1,0.9,0.9,0.1,0.1]
    ybox = [0.8,0.8,0.2,0.2,0.8]
    res = Ngl.Resources()
    res.gsLineColor = "NavyBlue" 
    res.gsLineThicknessF = 1.5
    Ngl.polyline_ndc(wks,xbox,ybox,res)
Ejemplo n.º 8
0
def add_panel_label(wks, plot, panLabel="", factor=.05,
                    placement="ul", axfunc=min, rlist=None):
    ''' Adds a label to a plot similar to the result from the
    nglPanelFigureString resource. The box around the perimenter of the label
    is drawn by the text_ndc function and controlled by txPerim* attributes.

    add_panel_label(wks, plot, panLabel="", factor=(1., 1.),
                    placement="ul", axfunc=min, rlist=None)

    wks : workstation Id as returned by open_wks()

    plot : plot Id of the panel to add the label

    panLabel : String containing the panel label

    factor : ratio of margin to reference axis length

    placement : One of "ul", "ur", "ll" or "lr" to specify the corner where the
    label should be placed

    axfunct : function which is used to give the reference axis length based on
    the viewport width and height. This function should accept one list or
    tupel as argument.

    rlist : Resouce object that can be used to customize the label and its
    perimeter box. It can contain any resource that is accepted by text_ndc as
    a valid resource.
    '''
    vpXF, vpYF, vpWidthF, vpHeightF = [ngl.get_float(plot, name) for name in
                                       ["vpXF", "vpYF",
                                       "vpWidthF", "vpHeightF"]]

    margin = factor * axfunc([vpWidthF, vpHeightF])

    ul_edge = [vpXF + .5 * vpWidthF, vpYF + .5 * vpHeightF]
    if placement[0] == "u":
        ul_edge[1] = vpYF - margin
        tx_just = "Top"
    elif placement[0] == "l":
        ul_edge[1] = vpYF - vpHeightF + margin
        tx_just = "Bottom"
    if placement[1] == "l":
        ul_edge[0] = vpXF + margin
        tx_just = tx_just + "Left"
    elif placement[1] == "r":
        ul_edge[0] = vpXF + vpWidthF - margin
        tx_just = tx_just + "Right"
    if len(ul_edge) != 2:
        raise ValueError("placement is not in ['ul', 'ur', 'll', 'lr']")

    tx_res = {"txFontHeightF": .02,
              "txPerimOn": True,
              "txBackgroundFillColor": 0,
              "txJust": tx_just}
    if rlist:
        tx_res.update(rlist.__dict__)

    ngl.text_ndc(wks, panLabel, *ul_edge, rlistc=_dict2Resource(tx_res))
Ejemplo n.º 9
0
def lg_create_legend_nd(wks, labels, x, y, shape, rlist=None):
    # Set defaults
    if not rlist:
        rlist = {}
    else:
        rlist = _resource2dict(rlist)
    ngl._set_legend_res(rlist, rlist)
    _set_default(rlist, "lgOrientation", "Vertical")
    _set_default(rlist, "vpWidthF", 0.6)
    _set_default(rlist, "vpHeightF", 0.6)
    _set_default(rlist, "lgItemCount", len(labels))
    _set_default(rlist, "lgLineColors", [i + 2
                                         for i in range(rlist["lgItemCount"])])
    _set_default(rlist, "lgLineLabelFontColors", rlist["lgLineColors"])

    if rlist["lgOrientation"].lower() == "vertical":
        nItems, nLegends = shape
        lwidth = rlist["vpWidthF"] / nLegends
        lheight = rlist["vpHeightF"]
        xpos = [x + i * lwidth for i in range(nLegends)]
        ypos = [y for i in range(nLegends)]
    else:
        nLegends, nItems = shape
        lwidth = rlist["vpWidthF"]
        lheight = rlist["vpHeightF"] / nLegends
        ypos = [y - i * lheight for i in range(nLegends)]
        xpos = [x for i in range(nLegends)]

    istart = 0
    lg = []
    for xi, yi in zip(xpos, ypos):
        nItem = min(nItems, rlist["lgItemCount"] - istart)
        if nItem <= 0:
            continue
        iend = istart + nItem
        lres = rlist.copy()
        if rlist["lgOrientation"].lower() == "vertical":
            lres["vpWidthF"] = lwidth
            lres["vpHeightF"] = lheight * nItem / nItems
        else:
            lres["vpWidthF"] = lwidth * nItem / nItems
            lres["vpHeightF"] = lheight
        for key in ("lgDashIndexes", "lgItemPositions", "lgItemTypes",
                    "lgLabelStrings", "lgLineColors", "lgLineDashSegLens",
                    "lgLineLabelFontColors", "lgLineLabelFontHeights",
                    "lgLineLabelStrings", "lgLineThicknesses",
                    "lgMarkerColors", "lgMarkerIndexes", "lgMarkerSizes",
                    "lgMarkerThicknesses", ):
            if key in rlist:
                lres[key] = rlist[key][istart:iend]
        lres["lgItemCount"] = nItem

        lg.append(ngl.legend_ndc(wks, nItem, labels[istart:iend],
                                 xi, yi, _dict2Resource(lres)))
        istart = iend
    return lg
Ejemplo n.º 10
0
def watermark(wks):
    txres              = Ngl.Resources()
    txres.txFontHeightF = 0.016
    txres.txJust = "CenterLeft"
    lstring = "Iowa Environmental Mesonet"
    Ngl.text_ndc(wks, lstring,.11,.186,txres)

    lstring = "Map Generated %s" % (mx.DateTime.now().strftime("%d %b %Y %-I:%M %p"),)
    txres.txFontHeightF = 0.010
    Ngl.text_ndc(wks, lstring,.11,.17,txres)
def plot(c):
    r = resource()
    r.trYReverse = c.reverseY
    r.trXReverse = c.reverseX
    r.trXLog = c.XlogAxis
    r.trYLog = c.YlogAxis
    #
    #Line styles
    r.xyLineColors = lineColors
    r.xyLineThicknesses = lineThickness
    #Plot title
    r.tiMainString = c.PlotTitle
    #Axis labels (ToDo: add defaults)
    #X and Y axis labels    
    r.tiXAxisString = c.Xlabel
    r.tiYAxisString = c.Ylabel
    if c.switchXY:
        r.tiXAxisString,r.tiYAxisString = r.tiYAxisString,r.tiXAxisString
        
    #  Legends, for multicurve plot
    legends = []
    for id in c.listVariables():
        if not id == c.Xid:
            if len(c.label[id]) > 0:
                legends.append(c.label[id])
            else:
                legends.append(id)
    #ToDo: Add option to skip legends
    #Legends are redundant if there's only one curve
    if len(legends) > 1:
        r.pmLegendDisplayMode = "Always"
        r.xyExplicitLegendLabels = legends
    #
    #Suppress line drawing and just plot symbol for scatter plot curves
    r.xyMarkers = plotSymbols
    r.xyMarkerColors = lineColors
    r.xyMarkerSizeF = .01
    r.xyMarkLineModes = []
    for id in c.listVariables():
        if not id == c.Xid:
            if c.scatter[id]:
                r.xyMarkLineModes.append('Markers')
            else:
                r.xyMarkLineModes.append('Lines')
    #
    w = Ngl.open_wks('x11','Climate Workbook')
    if c.switchXY:
        plot = Ngl.xy(w,c.Y(),c.X(),r)
    else:
        plot = Ngl.xy(w,c.X(),c.Y(),r)
    #
    #Now draw the plot
    r.nglDraw = True
    Ngl.panel(w,[plot],[1,1],r)
    return plotObj(w,plot) #So that user can delete window or save plot
 def save(self,filename = 'plot'):
     #'eps' workstation doesn't work reliably, but 'ps' is OK
     weps = Ngl.open_wks('ps',filename,self.WorkstationResources)
     Ngl.change_workstation(self.plot,weps)
     Ngl.draw(self.plot)
     Ngl.change_workstation(self.plot,self.workstation)
     Ngl.destroy(weps)
Ejemplo n.º 13
0
 def _draw_plots(self, plots, res):
     """Draw the provided plots."""
     for plot in xrange(self.number_plots):
         # It is OK for a plot to be None, it will just be skipped. This
         # allows the user to have a lot of control over their panel plot.
         if plots[plot] is not None:
             # Set the position of the plot.
             res_pos = Ngl.Resources()
             res_pos.vpXF, res_pos.vpYF = self.plot_coordinates[plot]
             Ngl.set_values(plots[plot], res_pos)
             # Draw to plot.
             Ngl.draw(plots[plot])
Ejemplo n.º 14
0
 def __call__(self, *args):
     """Ngl graphics function with modifications applied."""
     # Make a local copy of the resources arguments, preventing them
     # from being modified in the calling namespace. These copied (and
     # possibly modified) are used only inside this method.
     res = list()
     for i, arg in enumerate(args):
         if isinstance(arg, Ngl.Resources):
             res.append((copy(arg), i))
     # Form the new argument list containing copies of the resource
     # variables. We alse need to intercept nglDraw and nglFrame at the top
     # level, making sure they are turned off while modifications are
     # applied. After modifications we can check if drawing and frame
     # advancing was requested and do so then.
     new_args = list(args)
     draw_on = frame_on = False
     for r, i in res:
         draw_on = getattr(r, 'nglDraw', True)
         frame_on = getattr(r, 'nglFrame', True)
         if draw_on:
             setattr(r, 'nglDraw', False)
         if frame_on:
             setattr(r, 'nglFrame', False)
         new_args[i] = r
     # Call the modifier pre-plot methods.
     special_resources = list()
     for modifier in self.modifiers:
         # Run the preplot method of each modifier.
         modifier.preplot(*new_args)
         special_resources += modifier.resource_names
     # Go back and remove all special resources from resource variables
     # before they are passed to the Ngl plotting routine.
     for r, i in res:
         for resource_name in special_resources:
             try:
                 delattr(r, resource_name)
             except AttributeError:
                 pass
     # Make the plot.
     plot = self.f(*new_args)
     # Call the modifier post-plot methods.
     wks = args[0]
     for modifier in self.modifiers:
         modifier.postplot(wks, plot)
     # Check if the plot should be drawn and the frame advanced. Do so now
     # if required.
     if draw_on:
         Ngl.draw(plot)
     if frame_on:
         Ngl.frame(wks)
     # Return the modified plot.
     return plot
Ejemplo n.º 15
0
def estimate_snow( ts ):
    """
    Estimate the Snow
    """
    # Query Obs
    snowd = []
    snow = []
    lats = []
    lons = []
    icursor.execute("""
       SELECT x(s.geom) as lon, y(s.geom) as lat, snow, snowd
       from summary_%s c, stations s WHERE day = '%s' and 
       s.network in ('IA_COOP', 'MN_COOP', 'WI_COOP', 'IL_COOP', 'MO_COOP',
        'KS_COOP', 'NE_COOP', 'SD_COOP', 'ND_COOP', 'KY_COOP', 'MI_COOP',
        'OH_COOP') and c.iemid = s.iemid 
       and snowd >= 0""" % (ts.year, ts.strftime("%Y-%m-%d")))
    for row in icursor:
        lats.append( row['lat'] )
        lons.append( row['lon'] )
        snow.append( row['snow'] )
        snowd.append( row['snowd'] )

    if len(lats) < 5: # No data!
        for id in nt.sts.keys():
            nt.sts[id]['snow'] = 0
            nt.sts[id]['snowd'] = 0
        return


    # Create the analysis
    snowA = Ngl.natgrid(lons, lats, snow, iemre.XAXIS, iemre.YAXIS)
    snowdA = Ngl.natgrid(lons, lats, snowd, iemre.XAXIS, iemre.YAXIS)

    for id in nt.sts.keys():
        snowfall = snowA[nt.sts[id]['gridi'], nt.sts[id]['gridj']]
        snowdepth = snowdA[nt.sts[id]['gridi'], nt.sts[id]['gridj']]
        if snowfall > 0 and snowfall < 0.1:
          nt.sts[id]['snow'] = 0.0001
        elif snowfall < 0:
          nt.sts[id]['snow'] = 0
        elif numpy.isnan(snowfall):
          nt.sts[id]['snow'] = 0
        else:
          nt.sts[id]['snow'] = snowfall
        if snowdepth > 0 and snowdepth < 0.1:
          nt.sts[id]['snowd'] = 0.0001
        elif snowdepth < 0:
          nt.sts[id]['snowd'] = 0
        elif numpy.isnan(snowdepth):
          nt.sts[id]['snowd'] = 0
        else:
          nt.sts[id]['snowd'] = snowdepth
Ejemplo n.º 16
0
def natgrid_interp(data_in, lats_in, lons_in, lats_out, lons_out, valid_range=None, wrapping_overlap_interval=10.):
    IM_i = len(lons_in)
    JM_i = len(lats_in)
    IM_o = len(lons_out)
    JM_o = len(lats_out)
    lons_in_interval1 = np.zeros(IM_i)
    lons_in_interval2 = np.zeros(IM_i)
    lons_out_interval1 = np.zeros(IM_o)
    lons_out_interval2 = np.zeros(IM_o)
    for i in range(IM_i):
        lons_in_interval1[i] = Ngl.normalize_angle(lons_in[i], 0)
        lons_in_interval2[i] = Ngl.normalize_angle(lons_in[i], 1)
    for i in range(IM_o):
        lons_out_interval1[i] = Ngl.normalize_angle(lons_out[i], 0)
    if valid_range == None:
        valid_range = [data_in.min(), data_in.max()]
    x_in_interval1 = np.tile(lons_in_interval1,JM_i)
    y_in = np.repeat(lats_in, IM_i)
    z_in = data_in.flatten()
    if lons_in_interval1.max() - lons_in_interval1.min() > 180. and lons_in_interval2.max() - lons_in_interval2.min() > 180.:
        wrap = True
        ## span of lons is greater than 180; assume that it is a global run and therefore needs to be wrapped
        logical_wrapping = np.logical_and(lons_in_interval2[:] > -wrapping_overlap_interval, lons_in_interval2[:] < 0.)
        lons_wrapped = lons_in_interval2[logical_wrapping]
        data_in_wrapped = data_in[:,logical_wrapping]
        IM_wrapped = len(lons_wrapped)
        lons_wrapped_vector = np.tile(lons_wrapped,JM_i)
        lats_wrapped_vector = np.repeat(lats_in, IM_wrapped)
        data_in_wrapped_vector = data_in_wrapped.flatten()
        ### and add them together
        x_in_interval1 = np.concatenate((x_in_interval1, lons_wrapped_vector))
        y_in = np.concatenate((y_in, lats_wrapped_vector))
        z_in = np.concatenate((z_in, data_in_wrapped_vector))
        #
        logical_wrapping = np.logical_and(lons_in_interval2[:] < wrapping_overlap_interval, lons_in_interval2[:] > 0.)
        lons_wrapped = lons_in_interval1[logical_wrapping] + 360.
        data_in_wrapped = data_in[:,logical_wrapping]
        IM_wrapped = len(lons_wrapped)
        lons_wrapped_vector = np.tile(lons_wrapped,JM_i)
        lats_wrapped_vector = np.repeat(lats_in, IM_wrapped)
        data_in_wrapped_vector = data_in_wrapped.flatten()
        ### and add them together
        x_in_interval1 = np.concatenate((x_in_interval1, lons_wrapped_vector))
        y_in = np.concatenate((y_in, lats_wrapped_vector))
        z_in = np.concatenate((z_in, data_in_wrapped_vector))
        # ### reorder output lons
        # lons_out_interval1_unsorted = lons_out_interval1
        # lons_out_interval1 = lons_out_interval1[lons_out_interval1.argsort()]
    output1 = Ngl.natgrid(x_in_interval1, y_in, z_in, lons_out_interval1, lats_out).transpose()
    output_masked = np.ma.masked_array(output1, mask=np.logical_or(output1 < min(valid_range), output1 > max(valid_range)))
    return(output_masked)
Ejemplo n.º 17
0
def manual_title(wks, cfg):
    """ Manually place a title """
    if cfg.has_key("_title"):
        txres = Ngl.Resources()
        txres.txFontHeightF = 0.02
        txres.txJust        = "CenterLeft"
        Ngl.text_ndc(wks, cfg["_title"], .11, .834, txres)
        del txres
    if cfg.has_key("_valid"):
        txres = Ngl.Resources()
        txres.txFontHeightF = 0.013
        txres.txJust        = "CenterLeft"
        Ngl.text_ndc(wks, "Map Valid: "+ cfg["_valid"], .11, .811, txres)
        del txres
Ejemplo n.º 18
0
 def postplot(self, wks, plot):
     """Annotate the plot with title strings."""
     for position in ('left', 'right', 'center'):
         for string_spec in self.string_specs[position]:
             # Create text and annotation resource variables based on the
             # current string specification.
             txres = self._text_resources(string_spec, position)
             anres = self._annotation_resources(string_spec, position)
             # Create the actual text object.
             text_object = Ngl.text_ndc(wks, string_spec['string'], 0.,
                     0., txres)
             # Add the text object to the plot as an annotation. The plot
             # is a mutable object so doing this attaches the annotation to
             # the input plot.
             anno = Ngl.add_annotation(plot, text_object, anres)
Ejemplo n.º 19
0
def tm_lat_lon_labels(plot, ax="XB", direction=None, fmt="%d"):
    '''Add degree symbols to the tickmark labels of one axis of a plot. This
    function has to be called for each axis, that should get degree tickmark
    labels

    tm_lat_lon_labels(plot, ax="XB", direction="zonal")

    plot : plot Id of the plot to modify

    ax : one of "XB", "XT", "YL", "YR". Specifies the axis to work on.

    direction : String that starts with either "z" or "m", to indicate the
    direction of the axis (zonal or meridional). If omitted, a x-axis will be
    assumed to be zonal. If the string starts with any other character, there
    will be no hemisperic lables added, i.e N, S, W or E.

    fmt : format string of the number
    '''
    def do_nothing(x):
        return x
    func_code = ngl.get_string(plot, "tm" + ax + "LabelFuncCode")
    fmt_s = func_code.join([fmt, "S", "o", "N", ""])
    if not direction:
        if ax[0].lower() == "x":
            direction = "zonal"
        else:
            direction = "meridional"
    if direction[0].lower() == "z":
        hem_label = ("W", "E")
        func = abs
    elif direction[0].lower() == "m":
        hem_label = ("S", "N")
        func = abs
    else:
        hem_label = ("", "")
        func = do_nothing

    tm_values = ngl.get_float_array(plot, "tm" + ax + "Values")
    mtm_values = ngl.get_float_array(plot, "tm" + ax + "MinorValues")

    labels = [fmt_s % func(val) + hem_label[0] if val < 0.
              else fmt_s % func(val) + hem_label[1] for val in tm_values]

    rlist = {"tm" + ax + "Mode": "Explicit",
             "tm" + ax + "Values": tm_values,
             "tm" + ax + "MinorValues": mtm_values,
             "tm" + ax + "Labels": labels}
    _set_values(plot, rlist)
Ejemplo n.º 20
0
def load_soilt(data):
    soil_obs = []
    lats = [] 
    lons = []
    valid = 'YESTERDAY'
    if mx.DateTime.now().hour < 7:
        valid = '%s' % ((mx.DateTime.now() - mx.DateTime.RelativeDateTime(days=2)).strftime("%Y-%m-%d"), )
    rs = isuag.query("""SELECT station, c30 from daily WHERE 
         valid = '%s'""" % (valid,) ).dictresult()
    for i in range(len(rs)):
        stid = rs[i]['station']
        if not nt.sts.has_key(stid):
            continue
        soil_obs.append( rs[i]['c30'] )
        lats.append( nt.sts[stid]['lat'] )
        lons.append( nt.sts[stid]['lon'] )
    if len(lons) == 0:
        print 'No ISUAG Data for %s' % (valid,)
        sys.exit()
    numxout = 40
    numyout = 40
    xmin    = min(lons) - 1.
    ymin    = min(lats) - 1.
    xmax    = max(lons) + 1.
    ymax    = max(lats) + 1.
    xc      = (xmax-xmin)/(numxout-1)
    yc      = (ymax-ymin)/(numyout-1)

    xo = xmin + xc* numpy.arange(0,numxout)
    yo = ymin + yc* numpy.arange(0,numyout)

    analysis = Ngl.natgrid(lons, lats, soil_obs, list(xo), list(yo))
    for id in data.keys():
        data[id]['soilt'] = sampler(xo,yo,analysis, data[id]['lon'], data[id]['lat'])
Ejemplo n.º 21
0
def gridcell_areas(lat, lon, mask=None, radius=6372000., lat_edges_in=False, lon_edges_in=False):

    ### assume uniform longitude spacing
    lat_edges, lon_edges = get_gridcell_edges(lat, lon)
    if lon_edges_in:
        IM = lon.shape[0] - 1
        lon_edges = lon[:]
        res_lon = lon_edges[1] - lon_edges[0]
    else:
        IM = lon.shape[0]
        res_lon = lon[1]-lon[0]
        #
    if lat_edges_in:
        JM = lat.shape[0] - 1       
        lat_edges = lat[:] 
    else:
        JM = lat.shape[0]
    southern_edge = np.fmax(lat_edges[0:JM], np.ones(JM)*-89.99)
    northern_edge = np.fmin(lat_edges[1:], np.ones(JM)*89.99)
    #
    area = Ngl.gc_qarea(southern_edge,np.zeros(JM)-res_lon/2.,\
                        northern_edge,np.zeros(JM)-res_lon/2.,\
                        northern_edge,np.zeros(JM)+res_lon/2.,\
                        southern_edge,np.zeros(JM)+res_lon/2.,\
                        radius=radius) ### 1-D array in meters sq.
    area_array = np.array(np.reshape(np.repeat(area,IM), [JM,IM]))
    if not mask==None:
        area_array = np.ma.array(area_array, mask=mask)
    return area_array
Ejemplo n.º 22
0
def pointfind2(plat, plon, lat, lon, pdif=1):
    """ return indeces and values of the grid point closest to lat/lon point
    the same as pointfind but could be faster
    Usage: 
        pointfind(plat, plon, lat, lon, pdif = 0.5)
    Input:
        plat - latitude of the point
        plon - longitude of the point
        lat  - 2d array of latutudes
        lon  - 2d array of longitudes
        pdif  - we don't need it but leave it to have the same input as pointfind
    Output:
        indeces and values of the points that fulfil conditions 
        
        
    
    """

    dist_min = 1000000.
    
    
    for i in range(lon.shape[0]):
        for j in range(lon.shape[1]):
            dist = Ngl.gc_dist(plat,plon,lat[i,j],lon[i,j])
            if dist_min > dist:
                dist_min = dist
                i_min = i
                j_min = j
                lat_min = lat[i,j]
                lon_min = lon[i,j]
    
    print(i_min,j_min,lat_min,lon_min)
    gg1 = i_min, j_min
    
    return(gg1, lat_min, lon_min)
Ejemplo n.º 23
0
def cn_sym_min_max(x, res, ncontours=15, outside=True, aboutZero=True):
    '''Adjust the contour level configuration of a plot resource to give nice
    contour levels symmetric about zero. The contour levels are computed with
    NGL.nice_cntr_levels().

    cn_sym_min_max(x, res, ncontours=15, outside=True, aboutZero=True)

    x : data used in the contour plot.

    res : Resource object that will be updated accordingly.

    outside : Whether the maxima is outside or inside the contour range. Will
    be passed to NGL.nice_cntr_levels().

    aboutZero : Whether the contour levels will be centered about Zero. Will be
    passed to NGL.nice_cntr_levels().
    '''
    min_x = np.min(x)
    max_x = np.max(x)
    if min_x == max_x:
        min_x, max_x = -1., 1.
    min_out, max_out, step_size = ngl.nice_cntr_levels(min_x, max_x,
                                                       outside=outside,
                                                       max_steps=ncontours,
                                                       aboutZero=aboutZero)
    newres = {"cnLevelSelectionMode": "ManualLevels",
              "cnMinLevelValF": min_out,
              "cnMaxLevelValF": max_out,
              "cnLevelSpacingF": (max_out - min_out) / step_size}
    res.__dict__.update(newres)
Ejemplo n.º 24
0
def get_cyclic_colormap(ncolor=180., saturation=1., value=.75,
                           bg_color=(1., 1., 1.), fg_color=(0., 0., 0.)):
    ''' Returns a cyclic colormap by conversion from the HSV to RGB color space

    cmap = get_cyclic_colormap(ncolor=180., saturation=1., value=.75,
                               bg_color=(1., 1., 1.), fg_color=(0., 0., 0.))

    cmap : Numpy Nx3 array with RGB values of colormap

    ncolor : Number of colors to produce. Note that the colormap actually have
             ncolor + 2 colors (foreground and background color added).

    saturation : saturation of the colormap in HSV space

    value : brightness of the colormap.

    bg_color : background color in RGB

    fg_color : foreground color in RGB
    '''
    hue = np.linspace(0., 360., ncolor, endpoint=False)
    cmap = np.zeros((ncolor + 2, 3))
    cmap[0, :] = bg_color
    cmap[1, :] = fg_color
    for i, h in enumerate(hue):
        cmap[i + 2, :] = ngl.hsvrgb(h, saturation, value)
    return cmap
Ejemplo n.º 25
0
    def plot_using_ngl(self, field_2d = None, file_name = None):
        import Ngl
        wks_type = "png"
        wks = Ngl.open_wks(wks_type, "cv")
        res = Ngl.Resources()
        res.mpProjection = "Orthographic"

        pass
Ejemplo n.º 26
0
Archivo: core.py Proyecto: yyr/wrfout
    def draw_2d(self, varname, v):
        res = Ngl.Resources()
        plot_name = "wo_%s" % varname.lower()
        lgr.info("plot name set to - %s" % plot_name)
        wks = _get_wks(plot_name)
        for t in range(3):
            plot = Ngl.contour(wks, v[t, :, :], res)

        return plot
Ejemplo n.º 27
0
def merge(ts):
    """
    Process an hour's worth of stage4 data into the hourly RE
    """

    # Load up the 12z 24h total, this is what we base our deltas on
    fp = "/mesonet/ARCHIVE/data/%s/stage4/ST4.%s.24h.grib" % (
      ts.strftime("%Y/%m/%d"), ts.strftime("%Y%m%d%H") )

    grib = Nio.open_file(fp, 'r')
    # Rough subsample, since the whole enchillata is too much
    lats = numpy.ravel( grib.variables["g5_lat_0"][200:-100:5,300:900:5] )
    lons = numpy.ravel( grib.variables["g5_lon_1"][200:-100:5,300:900:5] )
    vals = numpy.ravel( grib.variables["A_PCP_GDS5_SFC_acc24h"][200:-100:5,300:900:5] )
    res = Ngl.natgrid(lons, lats, vals, iemre.XAXIS, iemre.YAXIS)
    stage4 = res.transpose()
    # Prevent Large numbers, negative numbers
    stage4 = numpy.where( stage4 < 10000., stage4, 0.)
    stage4 = numpy.where( stage4 < 0., 0., stage4)

    # Open up our RE file
    nc = netCDF4.Dataset("/mesonet/data/iemre/%s_mw_hourly.nc" % (ts.year,),'a')
    ts0 = ts + mx.DateTime.RelativeDateTime(days=-1)
    jan1 = mx.DateTime.DateTime(ts.year, 1, 1, 0, 0)
    offset0 = int(( ts0 - jan1).hours)
    offset1 = int(( ts -  jan1).hours)
    if offset0 < 0:
        offset0 = 0
    iemre2 = numpy.sum(nc.variables["p01m"][offset0:offset1,:,:], axis=0)
    
    iemre2 = numpy.where( iemre2 > 0., iemre2, 0.00024)
    iemre2 = numpy.where( iemre2 < 10000., iemre2, 0.00024)
    print "Stage IV 24h [Avg %5.2f Max %5.2f]  IEMRE Hourly [Avg %5.2f Max: %5.2f]" % (
                    numpy.average(stage4), numpy.max(stage4), 
                    numpy.average(iemre2), numpy.max(iemre2) )
    multiplier = stage4 / iemre2
    print "Multiplier MIN: %5.2f  AVG: %5.2f  MAX: %5.2f" % (
                    numpy.min(multiplier), numpy.average(multiplier),numpy.max(multiplier))
    for offset in range(offset0, offset1):
        data  = nc.variables["p01m"][offset,:,:]
        
        # Keep data within reason
        data = numpy.where( data > 10000., 0., data)
        adjust = numpy.where( data > 0, data, 0.00001) * multiplier
        adjust = numpy.where( adjust > 250.0, 0, adjust)
        nc.variables["p01m"][offset,:,:] = numpy.where( adjust < 0.01, 0, adjust)
        ts = jan1 + mx.DateTime.RelativeDateTime(hours=offset)
        print "%s IEMRE %5.2f %5.2f Adjusted %5.2f %5.2f" % (ts.strftime("%Y-%m-%d %H"), 
                                    numpy.average(data), numpy.max(data),
                                    numpy.average(nc.variables["p01m"][offset]),
                                    numpy.max(nc.variables["p01m"][offset]))
    nc.sync()
    iemre2 = numpy.sum(nc.variables["p01m"][offset0:offset1,:,:], axis=0)
    print "Stage IV 24h [Avg %5.2f Max %5.2f]  IEMRE Hourly [Avg %5.2f Max: %5.2f]" % (
                    numpy.average(stage4), numpy.max(stage4), 
                    numpy.average(iemre2), numpy.max(iemre2) )
    nc.close()
def plot_cc(wks,cont,x='lh',y='dse'):
   """
   
   """
   ##
   if (x == 'lh' and y == 'dse'):
      vy = np.linspace(240,360,101)
      press = 101300.
      vx,es = cclap(vy*1000/1004.,press)
      vx = 2.5 * 10**3 * vx
      ccstring = 'C-C, RH=100%'
      ## Line of constant moist static energy
      vy2 = 345. - vx
      lres = Ngl.Resources()
      lres.gsLineDashPattern         =  1  
      lres.gsLineLabelFontHeightF    =  0.009
      lres.gsLineLabelString         =  'MSE = 345 kJ/kg'
      lres.gsLineDashSegLenF         =  0.09
      line = Ngl.add_polyline(wks,cont,vx,vy2,lres)
      
   if (x == 'lh' and y == 'mse'):
      vy = np.linspace(240,360,101)
      press = 101300.
      vx,es = 2.5 * 10**3 * cclap(vy*1000/1004.,press)
      vy = vy + vx
      ccstring = 'C-C, RH=100%'
      
      ## Line of constant moist static energy
      vy2 = 345. * np.ones(vx.shape[0])
      lres = Ngl.Resources()
      lres.gsLineDashPattern         =  1  
      lres.gsLineLabelFontHeightF    =  0.009
      lres.gsLineLabelString         =  'MSE = 345 kJ/kg'
      lres.gsLineDashSegLenF         =  0.09
      line = Ngl.add_polyline(wks,cont,vx,vy2,lres)
   
   
   lres = Ngl.Resources()
   lres.gsLineDashPattern         =  15  
   lres.gsLineLabelFontHeightF    =  0.009
   lres.gsLineLabelString         =  ccstring
   line = Ngl.add_polyline(wks,cont,vx,vy,lres)
   
   return wks,cont
def contour(A,**kwargs):
    #The following allows an expert user to pass
    #Ngl options directly to the plotter.
    #ToDo: Note that
    #options explicitly specified later will over-ride
    #what the user specified. This should be fixed,
    #by checking for things already specified. We should
    #also allow for using this resource to specify a color
    #map.
    if 'resource' in kwargs.keys():
        r = kwargs['resource']
    else:
        r = Dummy()
    #
    r.cnFillOn = True #Uses color fill
    # Set axes if they have been specified
    # as keyword arguments
    if 'x' in kwargs.keys():
        r.sfXArray = kwargs['x']
    if 'y' in kwargs.keys():
        r.sfYArray = kwargs['y']
    #
    # Now create the plot
    
    rw = Dummy()
    #Set the color map
    if 'colors' in kwargs.keys():
        if (kwargs['colors'] == 'gray') or (kwargs['colors'] == 'grey') :
            #Set the default greyscale
            rw.wkColorMap = 'gsdtol'
        else:
            rw.wkColorMap = kwargs['colors']
    else:
        #Default rainbow color table
        rw.wkColorMap = "temp1" 
    
    w = Ngl.open_wks('x11','Climate Workbook',rw)
    r.nglDraw = False
    r.nglFrame = False
    plot = Ngl.contour(w,A,r)
    #Now draw the plot
    r.nglDraw = True
    Ngl.panel(w,[plot],[1,1],r)
    return plotObj(w,plot,rw) #So user can delete or save plot
Ejemplo n.º 30
0
    def generate_map_plots(self, file_name, title_on=True, labels_on=True):
        """
        Generate and save map plots.

        Store the plots in the file indicated by ``file_name`` in the current
        directory.

        Map plots are stored in a PDF file, with each map occupying its own
        page.

        :arg str file_name: The name for the PDF file containing map plots.
        :arg bool title_on: Determines, whether main title is plotted.
        :arg bool labels_on: Determines whether individual map titles are
            plotted.
        """
        #  Set resources
        resources = self.resources

        #  Set plot title
        if title_on:
            resources.tiMainString = self.title

        #  Open a workstation, display in X11 window
        #  Alternatively wks_type = "ps", wks_type = "pdf" or wks_type = "x11"
        wks_type = "pdf"
        wks = Ngl.open_wks(wks_type, file_name, resources)

        #
        #  Generate map plots
        #
        for dataset in self.map_data:
            #  Set title
            if labels_on:
                resources.lbTitleString = dataset["title"]

            #  Generate map plot
            cmap = Ngl.contour_map(wks, dataset["data"], resources)

        #  Clean up
        del cmap
        del resources

        Ngl.end()
Ejemplo n.º 31
0
#    o  Using mpShapeMode to allow a free aspect ratio.
#    o  Changing the map projection.
#
#  Output:
#    This example produces two visualizations:
#      1.) Cylindrical Equidistant projection
#      2.) Mollweide projection
#
#  Notes:
#

from __future__ import print_function
import Ngl

wks_type = "png"
wks = Ngl.open_wks(wks_type, "map1")

projections = ["CylindricalEquidistant", "Mollweide"]

mpres = Ngl.Resources()  # Indicate you want to set some
# resources.
mpres.mpShapeMode = "FreeAspect"  # Allow the aspect ratio to be
# changed.

mpres.vpWidthF = 0.8  # Make the aspect ratio square.
mpres.vpHeightF = 0.8

mpres.pmTitleDisplayMode = "Always"  # Force the title to appear.

for i in range(len(projections)):
    mpres.mpProjection = projections[i]
Ejemplo n.º 32
0
    # function [lon_f, lat_f, trendyr,figTitle, figPath, colorLab] = Pyn_figure3(exmNum, mdlNum)
    figData = eng.Pyn_figure4_ERA5(exmNum, nargout=6)
    figPath = np.array(figData[4])
    figPath = str(figPath)

    # ---Generate some dummy lat/lon data
    lat = np.squeeze(np.array(figData[1], 'f'))
    lon = np.squeeze(np.array(figData[0], 'f'))

    nlat = lat.size
    nlon = lon.size

    # ---Start the graphics section 创建画板
    wks_type = "x11"
    wks = Ngl.open_wks(wks_type, figPath)

    # # One color map per row of plots
    colormap = np.array(figData[5])

    # ---Values to use for contour labelbar

    varMin = -4  # Data mins
    varMax = 4  # Data maxs
    varInt = 1  # Data spacing
    levels = np.arange(varMin, varMax + 0.01, varInt)
    # list(np.arange(varMin,varMax,varInt))
    nlevs = len(levels)  # -- number of levels
    # -- convert list of floats to list of strings
    labels = ['{:.2f}'.format(x) for x in levels]
Ejemplo n.º 33
0
def add_labels_lcm(wks,map,dlat,dlon):
  PI         = 3.14159
  RAD_TO_DEG = 180./PI

#-- determine whether we are in northern or southern hemisphere
  if (float(minlat) >= 0. and float(maxlat) > 0.):
     HEMISPHERE = "NH"
  else:
     HEMISPHERE = "SH"

#-- pick some "nice" values for the latitude labels.
  lat_values = np.arange(int(minlat),int(maxlat),10)
  lat_values = lat_values.astype(float)
  nlat       = len(lat_values)

#-- We need to get the slope of the left and right min/max longitude lines.
#-- Use NDC coordinates to do this.
  lat1_ndc = 0.
  lon1_ndc = 0.
  lat2_ndc = 0.
  lon2_ndc = 0.
  lon1_ndc,lat1_ndc = Ngl.datatondc(map,minlon,lat_values[0])
  lon2_ndc,lat2_ndc = Ngl.datatondc(map,minlon,lat_values[nlat-1])
  slope_lft         = (lat2_ndc-lat1_ndc)/(lon2_ndc-lon1_ndc)

  lon1_ndc,lat1_ndc = Ngl.datatondc(map,maxlon,lat_values[0])
  lon2_ndc,lat2_ndc = Ngl.datatondc(map,maxlon,lat_values[nlat-1])
  slope_rgt         = (lat2_ndc-lat1_ndc)/(lon2_ndc-lon1_ndc)
  
#-- set some text resources
  txres               = Ngl.Resources()
  txres.txFontHeightF = 0.01
  txres.txPosXF       = 0.1

#-- Loop through lat values, and attach labels to the left and right edges of
#-- the masked LC plot. The labels will be rotated to fit the line better.
  dum_lft       = []                            #-- assign arrays
  dum_rgt       = []                            #-- assign arrays
  lat_label_lft = []                            #-- assign arrays
  lat_label_rgt = []                            #-- assign arrays

  for n in range(0,nlat):
#-- left label
    if(HEMISPHERE == "NH"):
       rotate_val = -90.
       direction  = "N"
    else:
       rotate_val =  90.
       direction  = "S"

#-- add extra white space to labels
    lat_label_lft.append("{}~S~o~N~{}              ".format(str(np.abs(lat_values[n])),direction))
    lat_label_rgt.append("              {}~S~o~N~{}".format(str(np.abs(lat_values[n])),direction))
        
    txres.txAngleF = RAD_TO_DEG * np.arctan(slope_lft) + rotate_val
                             
    dum_lft.append(Ngl.add_text(wks,map,lat_label_lft[n],minlon,lat_values[n],txres))

#-- right label
    if(HEMISPHERE == "NH"):
       rotate_val =  90
    else:
       rotate_val = -90

    txres.txAngleF = RAD_TO_DEG * np.arctan(slope_rgt) + rotate_val

    dum_rgt.append(Ngl.add_text(wks,map,lat_label_rgt[n],maxlon,lat_values[n],txres))

#----------------------------------------------------------------------
# Now do longitude labels. These are harder because we're not adding
# them to a straight line.
# Loop through lon values, and attach labels to the bottom edge for
# northern hemisphere, or top edge for southern hemisphere.
#----------------------------------------------------------------------
  del(txres.txPosXF)
  txres.txPosYF = -5.0

#-- pick some "nice" values for the longitude labels
  lon_values = np.arange(int(minlon+10),int(maxlon-10),10).astype(float)
  lon_values = np.where(lon_values > 180, 360-lon_values, lon_values)
  nlon       = lon_values.size

  dum_bot    = []                            #-- assign arrays
  lon_labels = []                            #-- assign arrays

  if(HEMISPHERE == "NH"):
     lat_val    = minlat
  else:
     lat_val    = maxlat

  ctrl = "~C~"

  for n in range(0,nlon):
    if(lon_values[n] < 0):
       if(HEMISPHERE == "NH"):
          lon_labels.append("{}~S~o~N~W{}".format(str(np.abs(lon_values[n])),ctrl))
       else:
          lon_labels.append("{}{}~S~o~N~W".format(ctrl,str(np.abs(lon_values[n]))))
    elif(lon_values[n] > 0):
       if(HEMISPHERE == "NH"):
          lon_labels.append("{}~S~o~N~E{}".format(str(lon_values[n]),ctrl))
       else:
          lon_labels.append("{}{}~S~o~N~E".format(ctrl,str(lon_values[n])))
    else:
       if(HEMISPHERE == "NH"):
          lon_labels.append("{}0~S~o~N~{}".format(ctrl,ctrl))
       else:
          lon_labels.append("{}0~S~o~N~{}".format(ctrl,ctrl))

#-- For each longitude label, we need to figure out how much to rotate
#-- it, so get the approximate slope at that point.
    if(HEMISPHERE == "NH"):             #-- add labels to bottom of LC plot
       lon1_ndc,lat1_ndc = Ngl.datatondc(map, lon_values[n]-0.5, minlat)
       lon2_ndc,lat2_ndc = Ngl.datatondc(map, lon_values[n]+0.5, minlat)
       txres.txJust = "TopCenter"
    else:                               #-- add labels to top of LC plot
       lon1_ndc,lat1_ndc = Ngl.datatondc(map, lon_values[n]+0.5, maxlat)
       lon2_ndc,lat2_ndc = Ngl.datatondc(map, lon_values[n]-0.5, maxlat)
       txres.txJust = "BottomCenter"

    slope_bot = (lat1_ndc-lat2_ndc)/(lon1_ndc-lon2_ndc)
    txres.txAngleF  =  RAD_TO_DEG * np.arctan(slope_bot)
    
#-- attach to map
    dum_bot.append(Ngl.add_text(wks, map, str(lon_labels[n]), \
                                lon_values[n], lat_val, txres))
  return
Ejemplo n.º 34
0
    lat2d[:, i] = lat

for i in range(0, len(lat)):
    lon2d[i, :] = lon

dx, dy = mpcalc.lat_lon_grid_deltas(lon2d, lat2d)

div1 = mpcalc.divergence(u, v, dx, dy)

div = np.array(div1)

# open workspace for analysis plot

wks_type = "png"
wks = ngl.open_wks(
    wks_type,
    "GFSanalysis_%s_%s_divergence_%shPa" % (region, init_dt[0:10], lev_hPa))

# define resources for analysis plot

res = ngl.Resources()
res.nglDraw = False
res.nglFrame = False

cmap = ngl.read_colormap_file("MPL_RdBu")

res.cnLinesOn = False
res.cnLineLabelsOn = False
res.cnFillOn = True
res.cnFillPalette = cmap
Ejemplo n.º 35
0
#
#  To use the ScientificPython module to read in the netCDF file,
#  comment out the above "import" command, and uncomment the
#  import line below.
#
# from Scientific.IO.NetCDF import NetCDFFile

#
#  Import Ngl support functions.
#
import Ngl
#
#  Open three netCDF files and get variables.
#
data_dir = Ngl.pynglpath("data")
cdf_file1 = Nio.open_file(os.path.join(data_dir, "cdf", "941110_P.cdf"), "r")
cdf_file2 = Nio.open_file(os.path.join(data_dir, "cdf", "sstdata_netcdf.nc"),
                          "r")
cdf_file3 = Nio.open_file(os.path.join(data_dir, "cdf", "Pstorm.cdf"), "r")

#
#  This is the ScientificPython method for opening netCDF files.
#
# cdf_file1 = NetCDFFile(os.path.join(data_dir,"cdf","941110_P.cdf"),"r")
# cdf_file2 = NetCDFFile(os.path.join(data_dir,"cdf","sstdata_netcdf.nc"),"r")
# cdf_file3 = NetCDFFile(os.path.join(data_dir,"cdf","Pstorm.cdf"),"r")

psl = cdf_file1.variables["Psl"][:]
sst = cdf_file2.variables["sst"]
pf = cdf_file3.variables["p"]
Ejemplo n.º 36
0
def plotline(nlines,plotin,yearsin,nsep,title,Datatitle,figtitlein,colormap,xString,yString,unit):
        wkres = Ngl.Resources()
        wkres.wkColorMap = colormap
        wks_type = "eps"
        wks = Ngl.open_wks(wks_type,figtitlein,wkres)

	res = Ngl.Resources()
        plot = []

        res.tiXAxisString = xString
        res.tiYAxisString = yString

	for iline in range(0,nlines):
                yearsplot = yearsin[iline]
                print yearsplot
#               nyearsin = len(yearsplot)
#               yearnums = range(0,nyearsin)
                A = np.array(yearsplot)
                regress = (np.zeros((5,nsep),np.float))

                for ibin in range(0,nsep):
                        if ibin == 0:
                                if (plotdensity):
                                        res.tiYAxisString = "frequency"
                                else:
                                        res.tiYAxisString = "number of events"
                        else:
                                res.tiYAxisString = ""

                        linreg = plotin[iline][ibin][:]
                        print A.shape
                        print linreg.shape
                        regress[:,ibin] = stats.linregress(A,linreg)

                        if ibin == nsep -1:
                                res.tiMainString = '{:^80}'.format('          >' + '{:2.1g}'.format(tbound1[ibin]) + unit + '; p=' + '{:5.3f}'.format(regress[3,ibin]) + "           ")
                        else:
                                res.tiMainString = '{:^80}'.format('{:2.1g}'.format(tbound1[ibin]) + '-' + '{:2.1g}'.format(tbound2[ibin]) + unit + '; p=' + '{:5.3f}'.format(regress[3,ibin]))

                        plot.append(Ngl.xy(wks,yearsplot,plotin[iline][ibin,:],res))

        panelres = Ngl.Resources()
        panelres.nglPanelLabelBar = True
        panelres.nglPanelYWhiteSpacePercent = 8.
        panelres.nglPanelXWhiteSpacePercent = 0.0

        panelres.nglPanelLabelBar                 = False     # Turn on panel labelbar
        panelres.nglPanelTop                      = 1.0
        panelres.nglPanelBottom                      = 0.00
        panelres.nglPanelLeft                   = 0.0
        panelres.nglPanelRight                  = 1.0
        panelres.nglPaperOrientation = "Portrait"
        panelres.nglScale = False
        panelres.nglMaximize = True

        #txres = Ngl.Resources()
        #txres.txFontHeightF = 0.012
        #Ngl.text_ndc(wks,'Annual timeseries of global number of events of various scales from' + Datatitle,0.5,0.94,txres)

        Ngl.panel(wks,plot,[nlines,float(nbounds)],panelres)

        print 'panelled'
Ejemplo n.º 37
0
if(not os.path.exists(shp_filename)):
  print("You do not have the '%s' shapefile." % shp_filename)
  print("See the comments at the top of this script for more information.")
  print("No shapefile outlines will be added.")
  ADD_SHAPE_OUTLINES = False
else:
  ADD_SHAPE_OUTLINES = True

#---Read data
a   = Nio.open_file(wrf_filename + ".nc")
hgt = a.variables["HGT"][0,:,:]    # Read first time step ( nlat x nlon)

#---Send graphics to PNG file
wks_type = "png"
wks = Ngl.open_wks(wks_type,"wrf2")

#---Set some plot options
res                   = Ngl.Resources()

# Contour options
res.cnFillOn          = True          # turn on contour fill
res.cnLinesOn         = False         # turn off contour lines
res.cnLineLabelsOn    = False         # turn off line labels
res.cnFillPalette     = "OceanLakeLandSnow"

# You may need to change these levels depending on your WRF output file
# Try first running this script with these two lines commented out.
res.cnLevelSelectionMode = "ExplicitLevels"
res.cnLevels  = [0.5,10,50,75,100,150,200,250,300,400,500,600,700,800,900,1000,1100]
Ejemplo n.º 38
0
for i,dt in enumerate(dates):
	nc = Dataset(datadir+'scp_narr_%s.nc' % str(dt.year),'r',format='NETCDF4_CLASSIC')
	idex = date2index(dt,nc['time'])
	scp = nc.variables["scp"][idex][:][:]
	cin  = nc.variables["sbcin"][idex][:][:]
	#cin mask
	term5 = np.fabs(cin)
	term5[np.fabs(cin)>50]=0.
	term5[np.fabs(cin)<=50]=1.
	scp = scp * term5
	scp_climo = np.append(scp_climo,[scp],axis=0)
	nc.close()
mean_scp = np.max(scp_climo,axis=0)
#print mean_scp.shape
#print len(dates)
wkres           =  Ngl.Resources()          #-- generate an resources object for workstation
wkres.wkWidth   =  2500                     #-- plot resolution 2500 pixel width
wkres.wkHeight  =  2000                     #-- plot resolution 2500 pixel height
wks_type        = "png"                     #-- graphics output type
wks             =  Ngl.open_wks(wks_type,"test",wkres)
#-- create 1st plot: vectors on global map
res                           =  Ngl.Resources()
res.mpFillOn               = True
res.mpOutlineOn            = True
res.mpLandFillColor        = "transparent"
res.mpOceanFillColor       = "grey"          # No fill
res.mpInlandWaterFillColor = "grey"
res.mpFillDrawOrder        = "PostDraw"
res.mpGridAndLimbOn        = True
#---Contour options
res.mpProjection = "LambertConformal"
Ejemplo n.º 39
0
    temp[k] = temp[k] / len(separate_month(times)[i])
    minval[k] = int(np.amin(temp[k]))
    maxval[k] = int(np.amax(temp[k]))
    i = i + 1

#    Mean_T = sp_temp/len(separate_month(times)[i])
#    print(Mean_T)

inc = 10

L_lats = np.arange(-80, 100, 20)
L_levs = [1000, 500, 200, 100, 50, 30, 10]

wks_type = "png"
wks_name = "Mean_T"
wks = Ngl.open_wks(wks_type, wks_name)

res = Ngl.Resources()
#resources.nglDraw  = False      # Turn off draw for the individual plots
#resources.nglFrame = False

#res.tiMainString = "MAM Zonal Mean Temperature from 1979 to 2019 "
res.tiMainFontHeightF = 0.024
res.cnLevelSelectionMode = "ManualLevels"

#res.cnMinLevelValF = minval
#res.cnMaxLevelValF = maxval
#res.cnLevelSpacingF       =  inc

res.cnFillOn = True
res.cnLineLabelsOn = False
Ejemplo n.º 40
0
# coding=utf-8

import sys
import cv2
import geojson
import sms_warr as sms
import Ngl


def read_features():
    return None


if __name__ == '__main__':
    file_name = sys.argv[1]
    nio = sms.SmsWarr(file_name)
    temp = nio.get_temperature()
    print(temp)
    Ngl.contour()
Ejemplo n.º 41
0
        figPath = np.array(figData[4])
        figPath = str(figPath)
        
        if figPath=='/no':
            continue
        else: 
            # ---Generate some dummy lat/lon data
            lat = np.squeeze(np.array(figData[1], 'f'))
            lon = np.squeeze(np.array(figData[0], 'f'))

            nlat = lat.size
            nlon = lon.size

            # ---Start the graphics section 创建画板
            wks_type = "eps"
            wks = Ngl.open_wks(wks_type, figPath)


            # # One color map per row of plots
            colormap = np.array(figData[5])

            # ---Values to use for contour labelbar

            varMin = -0.8     # Data mins
            varMax = 0.8     # Data maxs
            varInt = 0.2     # Data spacing
            levels = np.arange(varMin, varMax+0.01, varInt)
            # list(np.arange(varMin,varMax,varInt))
            nlevs = len(levels)  # -- number of levels
            # -- convert list of floats to list of strings
            labels = ['{:.2f}'.format(x) for x in levels]
Ejemplo n.º 42
0
def bilinear_interp(data_in, lats_in, lons_in, lats_out, lons_out):
    IM_i = len(lons_in)
    JM_i = len(lats_in)
    IM_o = len(lons_out)
    JM_o = len(lats_out)
    #
    #
    ## find four points from old grid that surround each point on new grid
    J_index_below = np.zeros(JM_o, dtype=np.int)
    J_index_above = np.zeros(JM_o, dtype=np.int)
    for j in range(JM_o):
        J_index_below[j] = np.sum(lats_in[:] <= lats_out[j]) - 1
        J_index_above[j] = JM_i - max(np.sum(lats_in[:] >= lats_out[j]), 1)
    #
    I_index_below = np.zeros(IM_o, dtype=np.int)
    I_index_above = np.zeros(IM_o, dtype=np.int)
    for i in range(IM_o):
        found = False
        for ii in range(IM_i):
            if not found:
                if Ngl.normalize_angle(lons_in[ii], 0) == Ngl.normalize_angle(
                        lons_out[i], 0):
                    I_index_below[i] = ii
                    I_index_above[i] = ii
                    found = True
        for ii in range(IM_i - 1):
            if not found:
                if Ngl.normalize_angle(lons_in[ii], 0) < Ngl.normalize_angle(
                        lons_out[i], 0) and Ngl.normalize_angle(
                            lons_in[ii + 1], 0) > Ngl.normalize_angle(
                                lons_out[i], 0):
                    I_index_below[i] = ii
                    I_index_above[i] = ii + 1
                    found = True
                elif Ngl.normalize_angle(lons_in[ii], 1) < Ngl.normalize_angle(
                        lons_out[i], 1) and Ngl.normalize_angle(
                            lons_in[ii + 1], 1) > Ngl.normalize_angle(
                                lons_out[i], 1):
                    I_index_below[i] = ii
                    I_index_above[i] = ii + 1
                    found = True
        if not found:
            if Ngl.normalize_angle(lons_in[IM_i - 1], 1) < Ngl.normalize_angle(
                    lons_out[i], 1) and Ngl.normalize_angle(
                        lons_in[0], 1) > Ngl.normalize_angle(lons_out[i], 1):
                I_index_below[i] = IM_i - 1
                I_index_above[i] = 0
                found = True
            elif Ngl.normalize_angle(
                    lons_in[IM_i - 1], 0) < Ngl.normalize_angle(
                        lons_out[i], 0) and Ngl.normalize_angle(
                            lons_in[0], 0) > Ngl.normalize_angle(
                                lons_out[i], 0):
                I_index_below[i] = IM_i - 1
                I_index_above[i] = 0
                found = True
        if not found:
            raise RuntimeError
    #
    # print(J_index_below)
    # print(J_index_above)

    # print(I_index_below)
    # print(I_index_above)
    #
    #
    if type(data_in) == np.ma.masked_array:
        masked_in = True
        data_out = np.ma.masked_all([JM_o, IM_o])
    else:
        masked_in = False
        data_out = np.zeros([JM_o, IM_o])
    #
    #
    ### now loop to do the interpolation
    if masked_in:
        for i in range(IM_o):
            for j in range(JM_o):
                if I_index_below[i] != I_index_above[i] and J_index_below[
                        j] != J_index_above[j]:
                    weights = np.ma.masked_all([4])
                    values = np.ma.masked_all([4])
                    weights[0] = absdeltalon(
                        lons_in[I_index_below[i]],
                        lons_out[i]) * abs(lats_in[J_index_below[j]] -
                                           lats_out[j])
                    weights[1] = absdeltalon(
                        lons_in[I_index_above[i]],
                        lons_out[i]) * abs(lats_in[J_index_below[j]] -
                                           lats_out[j])
                    weights[2] = absdeltalon(
                        lons_in[I_index_below[i]],
                        lons_out[i]) * abs(lats_in[J_index_above[j]] -
                                           lats_out[j])
                    weights[3] = absdeltalon(
                        lons_in[I_index_above[i]],
                        lons_out[i]) * abs(lats_in[J_index_above[j]] -
                                           lats_out[j])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_below[j], I_index_above[i]]
                    values[2] = data_in[J_index_above[j], I_index_below[i]]
                    values[3] = data_in[J_index_above[j], I_index_above[i]]
                    weights.mask = values.mask
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                elif I_index_below[i] == I_index_above[
                        i] and J_index_below[j] != J_index_above[j]:
                    weights = np.ma.masked_all([2])
                    values = np.ma.masked_all([2])
                    weights[0] = abs(lats_in[J_index_below[j]] - lats_out[j])
                    weights[1] = abs(lats_in[J_index_above[j]] - lats_out[j])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_above[j], I_index_above[i]]
                    weights.mask = values.mask
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                elif J_index_below[j] == J_index_above[
                        j] and I_index_below[i] != I_index_above[i]:
                    weights = np.ma.masked_all([2])
                    values = np.ma.masked_all([2])
                    weights[0] = absdeltalon(lons_in[I_index_below[i]],
                                             lons_out[i])
                    weights[1] = absdeltalon(lons_in[I_index_above[i]],
                                             lons_out[i])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_above[j], I_index_above[i]]
                    weights.mask = values.mask
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                else:
                    data_out[j, i] = data_in[J_index_below[j],
                                             I_index_below[i]]
    else:
        for i in range(IM_o):
            for j in range(JM_o):
                if I_index_below[i] != I_index_above[i] and J_index_below[
                        j] != J_index_above[j]:
                    weights = np.zeros([4])
                    values = np.zeros([4])
                    weights[0] = absdeltalon(
                        lons_in[I_index_below[i]],
                        lons_out[i]) * abs(lats_in[J_index_below[j]] -
                                           lats_out[j])
                    weights[1] = absdeltalon(
                        lons_in[I_index_above[i]],
                        lons_out[i]) * abs(lats_in[J_index_below[j]] -
                                           lats_out[j])
                    weights[2] = absdeltalon(
                        lons_in[I_index_below[i]],
                        lons_out[i]) * abs(lats_in[J_index_above[j]] -
                                           lats_out[j])
                    weights[3] = absdeltalon(
                        lons_in[I_index_above[i]],
                        lons_out[i]) * abs(lats_in[J_index_above[j]] -
                                           lats_out[j])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_below[j], I_index_above[i]]
                    values[2] = data_in[J_index_above[j], I_index_below[i]]
                    values[3] = data_in[J_index_above[j], I_index_above[i]]
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                elif I_index_below[i] == I_index_above[
                        i] and J_index_below[j] != J_index_above[j]:
                    weights = np.zeros([2])
                    values = np.zeros([2])
                    weights[0] = abs(lats_in[J_index_below[j]] - lats_out[j])
                    weights[1] = abs(lats_in[J_index_above[j]] - lats_out[j])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_above[j], I_index_above[i]]
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                elif J_index_below[j] == J_index_above[
                        j] and I_index_below[i] != I_index_above[i]:
                    weights = np.zeros([2])
                    values = np.zeros([2])
                    weights[0] = absdeltalon(lons_in[I_index_below[i]],
                                             lons_out[i])
                    weights[1] = absdeltalon(lons_in[I_index_above[i]],
                                             lons_out[i])
                    values[0] = data_in[J_index_below[j], I_index_below[i]]
                    values[1] = data_in[J_index_above[j], I_index_above[i]]
                    data_out[j, i] = np.sum(weights * values) / np.sum(weights)
                else:
                    data_out[j, i] = data_in[J_index_below[j],
                                             I_index_below[i]]
    #
    #
    return (data_out)
Ejemplo n.º 43
0
def natgrid_interp(data_in,
                   lats_in,
                   lons_in,
                   lats_out,
                   lons_out,
                   valid_range=None,
                   wrapping_overlap_interval=10.):
    IM_i = len(lons_in)
    JM_i = len(lats_in)
    IM_o = len(lons_out)
    JM_o = len(lats_out)
    lons_in_interval1 = np.zeros(IM_i)
    lons_in_interval2 = np.zeros(IM_i)
    lons_out_interval1 = np.zeros(IM_o)
    lons_out_interval2 = np.zeros(IM_o)
    for i in range(IM_i):
        lons_in_interval1[i] = Ngl.normalize_angle(lons_in[i], 0)
        lons_in_interval2[i] = Ngl.normalize_angle(lons_in[i], 1)
    for i in range(IM_o):
        lons_out_interval1[i] = Ngl.normalize_angle(lons_out[i], 0)
    if valid_range == None:
        valid_range = [data_in.min(), data_in.max()]
    x_in_interval1 = np.tile(lons_in_interval1, JM_i)
    y_in = np.repeat(lats_in, IM_i)
    z_in = data_in.flatten()
    if lons_in_interval1.max() - lons_in_interval1.min(
    ) > 180. and lons_in_interval2.max() - lons_in_interval2.min() > 180.:
        wrap = True
        ## span of lons is greater than 180; assume that it is a global run and therefore needs to be wrapped
        logical_wrapping = np.logical_and(
            lons_in_interval2[:] > -wrapping_overlap_interval,
            lons_in_interval2[:] < 0.)
        lons_wrapped = lons_in_interval2[logical_wrapping]
        data_in_wrapped = data_in[:, logical_wrapping]
        IM_wrapped = len(lons_wrapped)
        lons_wrapped_vector = np.tile(lons_wrapped, JM_i)
        lats_wrapped_vector = np.repeat(lats_in, IM_wrapped)
        data_in_wrapped_vector = data_in_wrapped.flatten()
        ### and add them together
        x_in_interval1 = np.concatenate((x_in_interval1, lons_wrapped_vector))
        y_in = np.concatenate((y_in, lats_wrapped_vector))
        z_in = np.concatenate((z_in, data_in_wrapped_vector))
        #
        logical_wrapping = np.logical_and(
            lons_in_interval2[:] < wrapping_overlap_interval,
            lons_in_interval2[:] > 0.)
        lons_wrapped = lons_in_interval1[logical_wrapping] + 360.
        data_in_wrapped = data_in[:, logical_wrapping]
        IM_wrapped = len(lons_wrapped)
        lons_wrapped_vector = np.tile(lons_wrapped, JM_i)
        lats_wrapped_vector = np.repeat(lats_in, IM_wrapped)
        data_in_wrapped_vector = data_in_wrapped.flatten()
        ### and add them together
        x_in_interval1 = np.concatenate((x_in_interval1, lons_wrapped_vector))
        y_in = np.concatenate((y_in, lats_wrapped_vector))
        z_in = np.concatenate((z_in, data_in_wrapped_vector))
        # ### reorder output lons
        # lons_out_interval1_unsorted = lons_out_interval1
        # lons_out_interval1 = lons_out_interval1[lons_out_interval1.argsort()]
    output1 = Ngl.natgrid(x_in_interval1, y_in, z_in, lons_out_interval1,
                          lats_out).transpose()
    output_masked = np.ma.masked_array(output1,
                                       mask=np.logical_or(
                                           output1 < min(valid_range),
                                           output1 > max(valid_range)))
    return (output_masked)
Ejemplo n.º 44
0
def conservative_regrid(data_in,
                        lats_in,
                        lons_in,
                        lats_out,
                        lons_out,
                        centers_out=True,
                        weights_in=None,
                        spherical=True,
                        radius=6372000.,
                        dilute_w_masked_data=True,
                        return_frac_input_masked=False):
    #
    """ do a conservative remapping from one 2-d grid to another.  assumes that input coordinate arrays are monotonic increasing (but handles lon jump across meridian) and that lat and lon are second-to last and last dimensions
        possible to mask the input data either by using a masked array or by setting weights array to zero for masked gridcells
        option dilute_w_masked_data means that where the input data is masked, a value of zero is averaged into the output grid, so that global integrals equal.
        setting this false will mean that global integrals do not equal, hoe=wever this could be back-calculated out using the fraction masked if return_frac_input_masked is set to true
        using the weights_in argument will also lead to non-equal global integrals """
    #
    shape = data_in.shape
    ndims = len(shape)
    JM_i = shape[ndims - 2]
    IM_i = shape[ndims - 1]
    maxlat = 89.9
    if weights_in == None:
        weights_in = np.ones([JM_i, IM_i])
        weights_mask = np.zeros([JM_i, IM_i], dtype=np.bool)
    else:
        weights_mask = weights_in[:] == 0.
    if type(data_in) == np.ma.core.MaskedArray:
        if ndims == 2:
            mask_in = np.logical_or(data_in[:].mask, weights_mask)
        elif ndims == 3:
            mask_in = np.logical_or(data_in[0, :].mask, weights_mask)
        elif ndims == 4:
            mask_in = np.logical_or(data_in[0, 0, :].mask, weights_mask)
    else:
        mask_in = np.logical_or(np.zeros([JM_i, IM_i], dtype=np.bool),
                                weights_mask)
    ## check to see if coordinates input are for gridcell centers or edges.  assume that if edges, length of vector will be one longer than length of data
    #
    #
    #
    #
    ####### lats_in
    if len(lats_in) == JM_i:
        if spherical:
            lat_edges_in = np.zeros(JM_i + 1)
            lat_edges_in[0] = max(-maxlat,
                                  lats_in[0] - 0.5 * (lats_in[1] - lats_in[0]))
            lat_edges_in[JM_i] = min(
                maxlat, lats_in[JM_i - 1] + 0.5 *
                (lats_in[JM_i - 1] - lats_in[JM_i - 2]))
            lat_edges_in[1:JM_i] = (lats_in[0:JM_i - 1] + lats_in[1:JM_i]) / 2.
        else:
            lat_edges_in = np.zeros(JM_i + 1)
            lat_edges_in[0] = lats_in[0] - 0.5 * (lats_in[1] - lats_in[0])
            lat_edges_in[JM_i] = lats_in[JM_i - 1] + 0.5 * (lats_in[JM_i - 1] -
                                                            lats_in[JM_i - 2])
            lat_edges_in[1:JM_i] = (lats_in[0:JM_i - 1] + lats_in[1:JM_i]) / 2.
    elif len(lats_in) == JM_i + 1:
        lat_edges_in = lats_in
    else:
        raise RuntimeError
    #
    ####### lats_out
    if centers_out:
        JM_o = len(lats_out)
        if spherical:
            lat_edges_out = np.zeros(JM_o + 1)
            lat_edges_out[0] = max(
                -maxlat, lats_out[0] - 0.5 * (lats_out[1] - lats_out[0]))
            lat_edges_out[JM_o] = min(
                maxlat, lats_out[JM_o - 1] + 0.5 *
                (lats_out[JM_o - 1] - lats_out[JM_o - 2]))
            lat_edges_out[1:JM_o] = (lats_out[0:JM_o - 1] +
                                     lats_out[1:JM_o]) / 2.
        else:
            lat_edges_out = np.zeros(JM_o + 1)
            lat_edges_out[0] = lats_out[0] - 0.5 * (lats_out[1] - lats_out[0])
            lat_edges_out[JM_o] = lats_out[
                JM_o - 1] + 0.5 * (lats_out[JM_o - 1] - lats_out[JM_o - 2])
            lat_edges_out[1:JM_o] = (lats_out[0:JM_o - 1] +
                                     lats_out[1:JM_o]) / 2.
    else:
        JM_o = len(lats_out) - 1
        lat_edges_out = lats_out
    #
    ####### lons_in
    if len(lons_in) == IM_i:
        lon_edges_in = np.zeros(IM_i + 1)
        lon_edges_in[0] = lons_in[0] - 0.5 * (lons_in[1] - lons_in[0])
        lon_edges_in[IM_i] = lons_in[IM_i - 1] + 0.5 * (lons_in[IM_i - 1] -
                                                        lons_in[IM_i - 2])
        lon_edges_in[1:IM_i] = (lons_in[0:IM_i - 1] + lons_in[1:IM_i]) / 2.
    elif len(lons_in) == IM_i + 1:
        lon_edges_in = lons_in
    else:
        raise RuntimeError
    #
    ####### lons_out
    if centers_out:
        IM_o = len(lons_out)
        lon_edges_out = np.zeros(IM_o + 1)
        lon_edges_out[0] = lons_out[0] - 0.5 * (lons_out[1] - lons_out[0])
        lon_edges_out[IM_o] = lons_out[IM_o - 1] + 0.5 * (lons_out[IM_o - 1] -
                                                          lons_out[IM_o - 2])
        lon_edges_out[1:IM_o] = (lons_out[0:IM_o - 1] + lons_out[1:IM_o]) / 2.
    else:
        IM_o = len(lons_out) - 1
        lon_edges_out = lons_out
    #
    #
    #
    ### first define ranges to loop over that map overlapping lat and lons
    lon_looplist = [[]]
    for i in range(IM_o):
        if i > 0:
            lon_looplist.append([])
        ### figure out which lon quadrant to normalize the data to.  if -90<lon<90 then normalize to option 1, otherwise to zero
        if (Ngl.normalize_angle(lon_edges_out[i], 1) <
                90.) and (Ngl.normalize_angle(lon_edges_out[i], 1) > -90.):
            lon_sector = 1
        else:
            lon_sector = 0
        min_cell_lon_o = Ngl.normalize_angle(lon_edges_out[i], lon_sector)
        max_cell_lon_o = Ngl.normalize_angle(lon_edges_out[i + 1], lon_sector)
        for ii in range(IM_i):
            min_cell_lon_i = Ngl.normalize_angle(lon_edges_in[ii], lon_sector)
            max_cell_lon_i = Ngl.normalize_angle(lon_edges_in[ii + 1],
                                                 lon_sector)
            overlap_interval_lon = min(max_cell_lon_i, max_cell_lon_o) - max(
                min_cell_lon_i, min_cell_lon_o)
            if overlap_interval_lon > 0.:
                lon_looplist[i].append(ii)
    #
    #
    #
    lat_looplist = [[]]
    for j in range(JM_o):
        if j > 0:
            lat_looplist.append([])
        min_cell_lat_o = lat_edges_out[j]
        max_cell_lat_o = lat_edges_out[j + 1]
        for jj in range(JM_i):
            min_cell_lat_i = lat_edges_in[jj]
            max_cell_lat_i = lat_edges_in[jj + 1]
            overlap_interval_lat = min(max_cell_lat_i, max_cell_lat_o) - max(
                min_cell_lat_i, min_cell_lat_o)
            if overlap_interval_lat > 0.:
                lat_looplist[j].append(jj)
    #
    #
    #
    ### now begin looping over output grid
    total_weights = np.zeros([JM_o, IM_o])
    total_weights_inputmasked = np.zeros([JM_o, IM_o])
    if ndims == 2:
        total_value = np.zeros([JM_o, IM_o])
    elif ndims == 3:
        total_value = np.zeros([shape[0], JM_o, IM_o])
    elif ndims == 4:
        total_value = np.zeros([shape[0], shape[1], JM_o, IM_o])
    else:
        raise RuntimeError
    for i in range(IM_o):
        ### figure out which lon quadrant to normalize the data to.  if -90<lon<90 then normalize to option 1, otherwise to zero
        if (Ngl.normalize_angle(lon_edges_out[i], 1) <
                90.) and (Ngl.normalize_angle(lon_edges_out[i], 1) > -90.):
            lon_sector = 1
        else:
            lon_sector = 0
        min_cell_lon_o = Ngl.normalize_angle(lon_edges_out[i], lon_sector)
        max_cell_lon_o = Ngl.normalize_angle(lon_edges_out[i + 1], lon_sector)
        for j in range(JM_o):
            min_cell_lat_o = lat_edges_out[j]
            max_cell_lat_o = lat_edges_out[j + 1]
            for ii in lon_looplist[i]:
                for jj in lat_looplist[j]:
                    if not (mask_in[jj, ii]) or dilute_w_masked_data:
                        min_cell_lat_i = lat_edges_in[jj]
                        max_cell_lat_i = lat_edges_in[jj + 1]
                        min_cell_lon_i = Ngl.normalize_angle(
                            lon_edges_in[ii], lon_sector)
                        max_cell_lon_i = Ngl.normalize_angle(
                            lon_edges_in[ii + 1], lon_sector)
                        overlap_interval_lat = min(
                            max_cell_lat_i, max_cell_lat_o) - max(
                                min_cell_lat_i, min_cell_lat_o)
                        overlap_interval_lon = min(
                            max_cell_lon_i, max_cell_lon_o) - max(
                                min_cell_lon_i, min_cell_lon_o)
                        if overlap_interval_lat > 0. and overlap_interval_lon > 0.:
                            fractional_overlap_lat = overlap_interval_lat / (
                                max_cell_lat_i - min_cell_lat_i)
                            fractional_overlap_lon = overlap_interval_lon / (
                                max_cell_lon_i - min_cell_lon_i)
                            fractional_overlap_total = fractional_overlap_lat * fractional_overlap_lon
                            if spherical:
                                weight = fractional_overlap_total * weights_in[
                                    jj, ii] * Ngl.gc_qarea(min_cell_lat_i,
                                                           min_cell_lon_i,
                                                           max_cell_lat_i,
                                                           min_cell_lon_i,
                                                           max_cell_lat_i,
                                                           max_cell_lon_i,
                                                           min_cell_lat_i,
                                                           max_cell_lon_i,
                                                           radius=radius)
                            else:
                                weight = fractional_overlap_total * weights_in[
                                    jj, ii]
                            total_weights[j, i] = total_weights[j, i] + weight
                            if not (mask_in[jj, ii]):
                                total_weights_inputmasked[
                                    j,
                                    i] = total_weights_inputmasked[j,
                                                                   i] + weight
                                if ndims == 2:
                                    total_value[j, i] = total_value[
                                        j, i] + weight * data_in[jj, ii]
                                elif ndims == 3:
                                    total_value[:, j,
                                                i] = total_value[:, j,
                                                                 i] + weight * data_in[:,
                                                                                       jj,
                                                                                       ii]
                                elif ndims == 4:
                                    total_value[:, :, j,
                                                i] = total_value[:, :, j,
                                                                 i] + weight * data_in[:, :,
                                                                                       jj,
                                                                                       ii]
    #
    if ndims > 2:
        total_weights_bc, total_value_bc = np.broadcast_arrays(
            total_weights, total_value)
        total_weights_inputmasked_bc, total_value_bc = np.broadcast_arrays(
            total_weights_inputmasked, total_value)
    else:
        total_weights_bc = total_weights
        total_weights_inputmasked_bc = total_weights_inputmasked
    #
    if total_weights_inputmasked.min() > 0.:
        mean_value = total_value[:] / total_weights_bc[:]
        fraction_maskedinput = total_weights_inputmasked[:] / total_weights[:]
    else:
        mean_value = np.ma.masked_array(
            total_value[:] / total_weights_bc[:],
            mask=total_weights_inputmasked_bc[:] == 0.)
        fraction_maskedinput = np.ma.masked_array(
            total_weights_inputmasked[:] / total_weights[:],
            mask=total_weights_inputmasked[:] == 0.)
    #
    #
    if not return_frac_input_masked:
        return mean_value
    else:
        return mean_value, fraction_maskedinput
Ejemplo n.º 45
0
pnew = [800., 750.]
lev = 0
f = Nio.open_file("/home/yumeng/realthesis/LowRes/LowRes_200610.01_tracer.nc")
# interpolation from sigma coordinate to pressure coordinate
# get parameters and variables for interpolation
hyam = f.variables["hyam"][:] / p0mb
hybm = f.variables["hybm"][:]
PS = f.variables["aps"][:, :, :]

f = Nio.open_file("/home/yumeng/realthesis/Uniform/AMRDUST.nc")
DU_CI = f.variables["CI"][:, :, :, :] * 1e6
DU_AI = f.variables["AI"][:, :, :, :] * 1e6
lon_Uni = f.variables["lon"][:]
lat_Uni = f.variables["lat"][:]
# start the interpolation
NewTracer_CI_Uni = Ngl.vinth2p(DU_CI[:, :, :, :], hyam, hybm, pnew,
                               PS[:, :, :], interp, p0mb1, 1, extrap)
NewTracer_AI_Uni = Ngl.vinth2p(DU_AI[:, :, :, :], hyam, hybm, pnew,
                               PS[:, :, :], interp, p0mb1, 1, extrap)
NewTracer_AI_Uni = np.ma.masked_where(NewTracer_AI_Uni == 1.e30,
                                      NewTracer_AI_Uni)
print(np.max(NewTracer_AI_Uni))

# day 10 to 20
# set up colormap
rlist = Ngl.Resources()
rlist.wkColorMap = "WhiteYellowOrangeRed"
for it in range(30):
    print(it)
    # use colormap and type information to setup output background
    wks_type = "pdf"
    wks = Ngl.open_wks(wks_type, "Uniform" + str(it), rlist)
Ejemplo n.º 46
0
          (diri + fname))
    print("You can get the files from the NCL website at:")
    print("http://www.ncl.ucar.edu/Document/Manuals/NCL_User_Guide/Data/")
    sys.exit()

minval = 250.  #-- minimum contour level
maxval = 315  #-- maximum contour level
inc = 5.  #-- contour level spacing

#-- open file and read variables
f = Nio.open_file(diri + fname, "r")  #-- open data file
temp = f.variables["tsurf"][0, :, :]  #-- first time step
lat = f.variables["lat"][:]  #-- all latitudes
lon = f.variables["lon"][:]  #-- all longitudes

tempac, lon = Ngl.add_cyclic(temp, lon)

#-- open a workstation
wks_type = "png"  #-- graphics output type
wkres = Ngl.Resources()  #-- generate an res object
#-- for workstation
wkres.wkWidth = 2500  #-- plot res 2500 pixel width
wkres.wkHeight = 2500  #-- plot resolution 2500
wks = Ngl.open_wks(wks_type, "plot_contour_ngl", wkres)  #-- open workstation

#-- set resources
res = Ngl.Resources()  #-- generate an resource object for plot

if hasattr(f.variables["tsurf"], "long_name"):
    res.tiMainString = f.variables["tsurf"].long_name  #-- set main title
Ejemplo n.º 47
0
def plotmap(plotvars1,plotvars2,
            plotmin1,plotmax1,plotmin2,plotmax2,
            vartitle1,vartitle2,
            title,
            figtitle,
            minlon,maxlon,minlat,maxlat,
            FillValue,panellabels = [],
            labelbarlabels = [],
            labelbarlabels2 = []):

    nplots = plotvars1.shape[0]
    wkres = Ngl.Resources()
    wkres.wkColorMap = "WhiteBlue"
    wks_type = "eps"
    wks = Ngl.open_wks(wks_type,figtitle,wkres)

    # if lons start negative, shift everything over so there isn't a line down
    # the middle of the Pacific

    lons1 = plotvars1.lon.values
    lons2 = plotvars2.lon.values

    lats1 = plotvars1.lat.values
    lats2 = plotvars2.lat.values

    if lons1[0] < 0:
        #nlonhalf1 = len(lons1)/2
        #lonsnew1 = np.zeros(lons1.shape,np.float)
        #lonsnew1[0:nlonhalf1] = lons1[nlonhalf1:nlons1]
        #lonsnew1[nlonhalf1:nlons1] = lons1[0:nlonhalf1] + 360.0

        lonsnew1 = shiftlonlons(lons1,len(lons1))
        lonsnew2 = shiftlonlons(lons2,len(lons2)) 

        for iplot in range(0,nplots):
            plotvars1[iplot] = shiftlons(plotvars1[iplot],len(lons1))
            plotvars2[iplot] = shiftlons(plotvars2[iplot],len(lons2))
    else:
        lonsnew1 = lons1
        lonsnew2 = lons2

    # initialize plotting resources
    res1 = Ngl.Resources()
    res1 = initcontourplot(res1,minlat,minlon,maxlat,maxlon,lats1,lonsnew1)
    res1.sfMissingValueV = FillValue
    res1.lbOrientation   = "Vertical"
    # including some font heights
    res1.lbLabelFontHeightF = 0.01
    res1.lbTitleFontHeightF = 0.01
    res1.tiMainFontHeightF = 0.015
    res1.lbTitlePosition = 'Bottom'
    res1.lbBottomMarginF = 0.0

    # initialize plotting resources
    res2 = Ngl.Resources()
    res2 = initcontourplot(res2,minlat,minlon,maxlat,maxlon,lats2,lonsnew2)
    res2.sfMissingValueV = FillValue
    res2.lbOrientation   = "Vertical"
    # including some font heights
    res2.lbLabelFontHeightF = 0.01
    res2.lbTitleFontHeightF = 0.01
    res2.tiMainFontHeightF = 0.008
    res2.lbTitlePosition = 'Bottom'
    res2.lbBottomMarginF = 0.0


    # turn off grid lines
    res1.mpGridAndLimbOn = False
    res2.mpGridAndLimbOn = False
    # initialize plotting array
    toplot = []
    # fill plotting array
    for iplot in range(0,nplots):
        tempplot = plotvars1[iplot].values
        tempplot[np.where(np.isnan(tempplot))] = FillValue
        # update plot resources with correct lat/lon
        res1.cnMinLevelValF       = plotmin1[iplot]
        res1.cnMaxLevelValF       = plotmax1[iplot]
        res1.cnLevelSpacingF      = ((plotmax1[iplot]-plotmin1[iplot])/10.0)
        res1.tiMainString = (vartitle1[iplot])

        if panellabels != []:
            res1.lbTitleString = labelbarlabels[iplot]
            res1.tiYAxisString  = panellabels[iplot]  # Y axes label.


        toplot.append(Ngl.contour_map(wks,tempplot,res1))

        tempplot = plotvars2[iplot].values
        tempplot[np.where(np.isnan(tempplot))] = FillValue
        res2.cnMinLevelValF       = plotmin2[iplot]          # contour levels.
        res2.cnMaxLevelValF       = plotmax2[iplot]
        res2.cnLevelSpacingF      = ((plotmax2[iplot]-plotmin2[iplot])/10.0)
        res2.tiMainString = vartitle2[iplot]
        if panellabels != []:
            res2.lbTitleString = labelbarlabels2[iplot]
            res2.tiYAxisString  = " "  # so plots are the same
                                                      # size
        toplot.append(Ngl.contour_map(wks,tempplot,res2))

    textres = Ngl.Resources()
    textres.txFontHeightF = 0.015
    Ngl.text_ndc(wks,title,0.5,0.87,textres)

    panelres = Ngl.Resources()
    panelres.nglPanelLabelBar = True
    panelres.nglPanelYWhiteSpacePercent = 0.
    panelres.nglPanelXWhiteSpacePercent = 0.

    panelres.nglPanelLabelBar   = False     # Turn on panel labelbar
    if nplots > 5:
        panelres.nglPanelTop                      = 0.8
        panelres.nglPanelBottom                      = 0.15
    else:
        panelres.nglPanelTop                      = 0.95
        panelres.nglPanelBottom                      = 0.01

    panelres.nglPanelLeft = 0.01
    panelres.nglPanelRight = 0.99

    panelres.nglPanelFigureStrings = (
            ['a.','b.','c.','d.','e.','f.','g.','h.','i.','j.','k.','l.','m.','n.','o.','p.'])
    panelres.nglPanelFigureStringsJust = "TopLeft"
    panelres.nglPanelFigureStringsFontHeightF = 0.008
    panelres.nglPanelFigureStringsParallelPosF = -0.55
    panelres.nglPanelFigureStringsOrthogonalPosF = -0.7
    panelres.nglPanelFigureStringsPerimOn = False   # turn off boxes
    #panelres.amJust = "TopLeft"

    panelres.nglPaperOrientation = "Auto"

    plot = Ngl.panel(wks,toplot,[nplots,2],panelres)
Ejemplo n.º 48
0
#-- open a file and read variables
f    = Nio.open_file("rectilinear_grid_2D.nc", "r")

u    = f.variables["u10"]
v    = f.variables["v10"]
ua   = f.variables["u10"][0,:,:]
va   = f.variables["v10"][0,:,:]

lat  = f.variables["lat"]
lon  = f.variables["lon"]
nlon = len(lon)
nlat = len(lat)

#-- open a workstation
wks = Ngl.open_wks("png",os.path.basename(__file__).split('.')[0])

#-- resource settings
stres                  =  Ngl.Resources()
stres.nglFrame         =  False

stres.vfXArray         =  lon[::3]
stres.vfYArray         =  lat[::3]
  
stres.mpFillOn         =  True
stres.mpOceanFillColor = "Transparent"
stres.mpLandFillColor  = "Gray90"
stres.mpInlandWaterFillColor = "Gray90"

#-- create the plot
plot = Ngl.streamline_map(wks,ua[::3,::3],va[::3,::3],stres)
Ejemplo n.º 49
0
def contourwithoverlay(wks,resMP,varin, plotoverlay):
	plottemp = Ngl.contour_map(wks,varin,resMP)
        Ngl.overlay(plottemp,plotoverlay)
	return(plottemp)
Ejemplo n.º 50
0
#
#  Import Nio for reading netCDF files.
#
import Nio

#
#  Import Ngl support functions.
#
import Ngl

import os
#
#  Open the netCDF file.
#
file = Nio.open_file(os.path.join(Ngl.pynglpath("data"),"cdf","pop.nc"))

#
#  Open a workstation.
#
wks_type = "png"
wks = Ngl.open_wks(wks_type,"streamline1")

#
#  Get the u/v and lat/lon variables.
#
urot  = file.variables["urot"]
vrot  = file.variables["vrot"]
lat2d = file.variables["lat2d"]
lon2d = file.variables["lon2d"]
Ejemplo n.º 51
0
            for i in range(nlon):
                c_thick[j, i] = max(float(sum(cldfra[:, j, i]) - 1) * 1.e2, 0.)
                for k in range(1, nk):
                    if (cldfra[k,j,i] == 1 and cldfra[k-1,j,i] == 0 \
                        and c_base[j,i] == 0.0):
                        c_base[j, i] = lev[k]  #get cloud base
                #-------------------------------------------------
                    if (k < nk - 1):
                        if (cldfra[k + 1, j, i] == 0 and cldfra[k, j, i] == 1):
                            c_top[j, i] = lev[k]
                    elif (k == nk - 1 and cldfra[k, j, i] == 1):
                        c_top[j, i] = lev[k]
        #------------------------------------------------------------
        #print(str(cldfra[:,190,1]))
        del cldfra
        #c_thick = c_top - c_base;# print(c_thick.shape)
        #print(str(c_thick[190,1]),str(c_top[190,1]),str(c_base[190,1]))
        newFile.write(bytearray(c_thick))
        newFile.write(bytearray(c_top))
        newFile.write(bytearray(c_base))
    print("\n" + "-" * 80)
    del a  #loop t

end_time = cpu_time()
end_time = (end_time - start_time) / 60.0
print("\033[92m\"{}\" has done!\nTime elapsed: {:.2f}" \
 .format(os.path.basename(__file__), end_time), "mins.\033[0m")
Ngl.end()
#Nio.end()
#exit()
Ejemplo n.º 52
0
#
#  Import numpy.
#
import numpy

#
#  Import NGL support functions.
#
import Ngl

#
#  Open a workstation.
#
wks_type = "png"
wks = Ngl.open_wks(wks_type,"ngl11p")

dirc     = Ngl.pynglpath("data")
data     = Ngl.asciiread(dirc+"/asc/u.cocos",(39,14),"float")

pressure  = data[:,0]    # First column of data is pressure (mb).
height    = data[:,1]    # Second column is height (km).
u         = data[:,2:14] # Rest of columns are climatological zonal winds
                           # (u: m/s)
unew = Ngl.add_cyclic(u)  # Add cyclic points to u.

#----------- Begin first plot -----------------------------------------

resources = Ngl.Resources()

resources.tiMainString   = "~F26~Cocos Island"   # Main title.
maxval = 315  #-- maximum contour level
inc = 5.  #-- contour level spacing

#--  open file and read variables
f = Nio.open_file(diri + fname, "r")  #-- open data file
temp = f.variables["tsurf"][0, ::-1, :]  #-- first time step, reverse latitude
u = f.variables["u10"][0, ::-1, :]  #-- first time step, reverse latitude
v = f.variables["v10"][0, ::-1, :]  #-- first time step, reverse latitude
lat = f.variables["lat"][::-1]  #-- reverse latitudes
lon = f.variables["lon"][:]  #-- all longitudes

nlon = len(lon)  #-- number of longitudes
nlat = len(lat)  #-- number of latitudes

#-- open a workstation
wkres = Ngl.Resources()  #-- generate an resources object for workstation
wks_type = "x11"  #-- graphics output type
wks = Ngl.open_wks(wks_type, "plot_vector_PyNGL", wkres)

#-- create 1st plot: vectors on global map
res = Ngl.Resources()
res.vfXCStartV = float(lon[0])  #-- minimum longitude
res.vfXCEndV = float(lon[len(lon[:]) - 1])  #-- maximum longitude
res.vfYCStartV = float(lat[0])  #-- minimum latitude
res.vfYCEndV = float(lat[len(lat[:]) - 1])  #-- maximum latitude

res.tiMainString = "~F25~Wind velocity vectors"  #-- title string
res.tiMainFontHeightF = 0.024  #-- decrease title font size

res.mpLimitMode = "Corners"  #-- select a sub-region
res.mpLeftCornerLonF = float(lon[0])  #-- left longitude value
Ejemplo n.º 54
0
       lon1_ndc,lat1_ndc = Ngl.datatondc(map, lon_values[n]+0.5, maxlat)
       lon2_ndc,lat2_ndc = Ngl.datatondc(map, lon_values[n]-0.5, maxlat)
       txres.txJust = "BottomCenter"

    slope_bot = (lat1_ndc-lat2_ndc)/(lon1_ndc-lon2_ndc)
    txres.txAngleF  =  RAD_TO_DEG * np.arctan(slope_bot)
    
#-- attach to map
    dum_bot.append(Ngl.add_text(wks, map, str(lon_labels[n]), \
                                lon_values[n], lat_val, txres))
  return

#-------------------------------------------------------
#                       MAIN
#-------------------------------------------------------
wks = Ngl.open_wks("png","plot_mptick_10")              #-- open workstation

#-----------------------------------
#-- first plot: Lambert Conformal
#-----------------------------------
#-- northern hemisphere
minlon = -90.                                           #-- min lon to mask
maxlon =  40.                                           #-- max lon to mask
minlat =  20.                                           #-- min lat to mask
maxlat =  80.                                           #-- max lat to mask

mpres                        =  Ngl.Resources()         #-- resource object
mpres.nglMaximize            =  True
mpres.nglDraw                =  False                   #-- turn off plot draw and frame advance. We will
mpres.nglFrame               =  False                   #-- do it later after adding subtitles.
Ejemplo n.º 55
0
f=Nio.open_file("/home/smc001/hall4/zet.nc","r")
print f
temp=f.variables["ZET_vgrid5"]
#lat=f.variables["lat"]
#lon=f.variables["lon"]

lat=xr.open_dataset('/home/smc001/hall4/zet.nc').lat
lon=xr.open_dataset('/home/smc001/hall4/zet.nc').lon

temp1=temp[0,50,:,:]
nlon=len(lon[:,0])
nlat=len(lat[0,:])

wks_type="png"

wks  = Ngl.open_wks(wks_type, "zet_1km")  
resources = Ngl.Resources()

resources.gsnMaximize            = True             
resources.cnFillOn               = True              
resources.cnLinesOn              = False            
resources.cnLineLabelsOn         = False
cmap=Ngl.read_colormap_file("radar_1")
cmap[0:7,:]=1.
resources.cnFillPalette          = cmap
resources.lbOrientation          = "Vertical"  
resources.mpDataBaseVersion      = "MediumRes"
resources.gsnAddCyclic           = False
resources.sfXArray                 = lon.values
resources.sfYArray                 = lat.values
resources.cnLevelSelectionMode = "ExplicitLevels"
Ejemplo n.º 56
0
#
from __future__ import print_function
import Ngl
import numpy

M = 29
N = 25
T = numpy.zeros([N, M])

#
# create a mound as a test data set
#
jspn = numpy.power(range(-M // 2 + 5, M // 2 + 5), 2)
ispn = numpy.power(range(-N // 2 - 3, N // 2 - 3), 2)
for i in range(len(ispn)):
    T[i, :] = ispn[i] + jspn
T = 100. - 8. * numpy.sqrt(T)

#
#  Open a workstation and draw the contour plot with color fill.
#
wks_type = "png"
wks = Ngl.open_wks(wks_type, "cn02p")

res = Ngl.Resources()
res.cnFillOn = True
Ngl.contour(wks, T, res)

Ngl.end()
Ejemplo n.º 57
0
# Set up arrays for polygons, polymarkers, and polylines.
#
xx = numpy.array([1., 32., 64.], 'f')
ytopline = [0.5, 0.5, 0.5]  # Top line
ymidline = [0.0, 0.0, 0.0]  # Middle line
ybotline = [-0.5, -0.5, -0.5]  # Bottom line

xdots = x[26:37:5]  # X and Y coordinates for polymarkers.
ydots = y[26:37:5]

xsquare = [16.0, 48.0, 48.0, 16.0, 16.0]  # X and Y coordinates
ysquare = [-0.5, -0.5, 0.5, 0.5, -0.5]  # for polygon.

# Send output to PNG file
wks_type = "png"
wks = Ngl.open_wks(wks_type, "xy2")

#
# Set up common resources for the XY plots.
#
xyres = Ngl.Resources()
xyres.nglDraw = False
xyres.nglFrame = False
xyres.trXMaxF = 64

# Create first XY plot, but don't draw it yet.

xy1 = Ngl.xy(wks, x, y, xyres)

#
# Set some resources for the primitives to be drawn.
Ejemplo n.º 58
0
#---Read variable to plot
f              = Nio.open_file(mpas_file)
temp        = f.variables["temperature"][0,:,0]

#---Read edge and lat/lon information
lonCell        = f.variables["lonCell"][:]
latCell        = f.variables["latCell"][:]

#---Convert to degrees from radians
RAD2DEG   = 180.0/(math.atan(1)*4.0)
latCell   = latCell * RAD2DEG
lonCell   = lonCell * RAD2DEG

#---Start the graphics
wks_type = "png"
wks = Ngl.open_wks(wks_type,"mpas3")

res                        = Ngl.Resources()   # Plot mods desired.

res.cnFillOn               = True              # color plot desired
res.cnFillMode             = "RasterFill"
res.cnFillPalette          = "ncl_default"
res.cnLinesOn              = False             # turn off contour lines
res.cnLineLabelsOn         = False             # turn off contour labels
res.cnLevelSpacingF        = 0.5   # 2 was chosen

res.lbOrientation          = "Horizontal"      # vertical by default
res.lbBoxLinesOn           = False             # turn off labelbar boxes
res.lbLabelFontHeightF     = 0.01

res.mpFillOn               = True
Ejemplo n.º 59
0
diri = "./"  #-- data directory
fname = "rectilinear_grid_2D.nc"  #-- data file name

#--  open file and read variables
f = Nio.open_file(diri + fname, "r")  #-- open data file
temp = f.variables["tsurf"][0, :, :]  #-- first time step
u = f.variables["u10"][0, :, :]  #-- first time step
v = f.variables["v10"][0, :, :]  #-- first time step
lat = f.variables["lat"][:]  #-- all latitudes
lon = f.variables["lon"][:]  #-- all longitudes

nlon = len(lon)  #-- number of longitudes
nlat = len(lat)  #-- number of latitudes

#-- open a workstation
wkres = Ngl.Resources()  #-- generate an resources object for workstation
wkres.wkWidth = 2500  #-- plot resolution 2500 pixel width
wkres.wkHeight = 2500  #-- plot resolution 2500 pixel height
wks_type = "png"  #-- graphics output type
wks_name = os.path.basename(__file__).split(".")[0]
wks = Ngl.open_wks(wks_type, wks_name, wkres)

#-- create 1st plot: vectors on global map
res = Ngl.Resources()

res.tiMainString = "~F25~Wind velocity vectors"  #-- title string
res.tiMainFontHeightF = 0.024  #-- decrease title font size

res.mpLimitMode = "Corners"  #-- select a sub-region
res.mpLeftCornerLonF = float(lon[0])  #-- left longitude value
res.mpRightCornerLonF = float(lon[nlon - 1])  #-- right longitude value
Ejemplo n.º 60
0
        jr = i + 1
        jl = i - 1
        while np.isnan(lat[jr]):
            jr += 1
        while np.isnan(lat[jl]):
            jl -= 1
        lat[i] = 0.5 * (lat[jl] + lat[jr])
''' Plot '''
(lon_m, lat_m, hgt_m) = read_topo_bin()
lon_m = np.ravel(lon_m[:, :])
lat_m = np.ravel(lat_m[:, :])
hgt_m = np.ravel(hgt_m[:, :])
print(hgt_m.shape)
print(lat_m.shape)

res = Ngl.Resources()
(wks, res) = wks_setting(res)
res.sfXArray = lon_m
res.sfYArray = lat_m
#res.caXMissingV = undef ;res.caYMissingV = res.caXMissingV
res.sfMissingValueV = undef

# Contour options
res.cnFillOn = True  # turn on contour fill
res.cnMissingValFillColor = [0.194771, 0.210458, 0.610458]
res.cnLinesOn = True  # turn off contour lines
res.cnLineLabelsOn = False  # turn off line labels
#res.cnFillMode            = "RasterFill"
res.lbLabelFontHeightF = 0.015  # default is a bit large

#print(np.arange(125,3125,125))