Ejemplo n.º 1
0
    def test_femobjects_make(self):
        doc = self.active_doc
        analysis = ObjectsFem.makeAnalysis(doc)

        analysis.addObject(ObjectsFem.makeConstraintBearing(doc))
        analysis.addObject(ObjectsFem.makeConstraintBodyHeatSource(doc))
        analysis.addObject(ObjectsFem.makeConstraintContact(doc))
        analysis.addObject(ObjectsFem.makeConstraintDisplacement(doc))
        analysis.addObject(
            ObjectsFem.makeConstraintElectrostaticPotential(doc))
        analysis.addObject(ObjectsFem.makeConstraintFixed(doc))
        analysis.addObject(ObjectsFem.makeConstraintFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintFluidBoundary(doc))
        analysis.addObject(ObjectsFem.makeConstraintForce(doc))
        analysis.addObject(ObjectsFem.makeConstraintGear(doc))
        analysis.addObject(ObjectsFem.makeConstraintHeatflux(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintPlaneRotation(doc))
        analysis.addObject(ObjectsFem.makeConstraintPressure(doc))
        analysis.addObject(ObjectsFem.makeConstraintPulley(doc))
        analysis.addObject(ObjectsFem.makeConstraintSelfWeight(doc))
        analysis.addObject(ObjectsFem.makeConstraintTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintTransform(doc))

        analysis.addObject(ObjectsFem.makeElementFluid1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry2D(doc))
        analysis.addObject(ObjectsFem.makeElementRotation1D(doc))

        analysis.addObject(ObjectsFem.makeMaterialFluid(doc))
        mat = analysis.addObject(ObjectsFem.makeMaterialSolid(doc))[0]
        analysis.addObject(ObjectsFem.makeMaterialMechanicalNonlinear(
            doc, mat))

        msh = analysis.addObject(ObjectsFem.makeMeshGmsh(doc))[0]
        analysis.addObject(ObjectsFem.makeMeshBoundaryLayer(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshGroup(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshRegion(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshNetgen(doc))
        analysis.addObject(ObjectsFem.makeMeshResult(doc))

        analysis.addObject(ObjectsFem.makeResultMechanical(doc))

        analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc))
        analysis.addObject(ObjectsFem.makeSolverCalculix(doc))
        sol = analysis.addObject(ObjectsFem.makeSolverElmer(doc))[0]
        analysis.addObject(ObjectsFem.makeSolverZ88(doc))

        analysis.addObject(ObjectsFem.makeEquationElasticity(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationElectrostatic(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFlow(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFluxsolver(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationHeat(doc, sol))
        # TODO the equations show up twice on Tree (on solver and on analysis), if they are added to the analysis group

        doc.recompute()
        self.assertEqual(len(analysis.Group),
                         testtools.get_defmake_count() -
                         1)  # because of the analysis itself count -1
Ejemplo n.º 2
0
    def test_femobjects_make(self):
        doc = self.active_doc
        analysis = ObjectsFem.makeAnalysis(doc)

        analysis.addObject(ObjectsFem.makeConstraintBearing(doc))
        analysis.addObject(ObjectsFem.makeConstraintBodyHeatSource(doc))
        analysis.addObject(ObjectsFem.makeConstraintContact(doc))
        analysis.addObject(ObjectsFem.makeConstraintDisplacement(doc))
        analysis.addObject(ObjectsFem.makeConstraintElectrostaticPotential(doc))
        analysis.addObject(ObjectsFem.makeConstraintFixed(doc))
        analysis.addObject(ObjectsFem.makeConstraintFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintFluidBoundary(doc))
        analysis.addObject(ObjectsFem.makeConstraintForce(doc))
        analysis.addObject(ObjectsFem.makeConstraintGear(doc))
        analysis.addObject(ObjectsFem.makeConstraintHeatflux(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintPlaneRotation(doc))
        analysis.addObject(ObjectsFem.makeConstraintPressure(doc))
        analysis.addObject(ObjectsFem.makeConstraintPulley(doc))
        analysis.addObject(ObjectsFem.makeConstraintSelfWeight(doc))
        analysis.addObject(ObjectsFem.makeConstraintTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintTransform(doc))

        analysis.addObject(ObjectsFem.makeElementFluid1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry2D(doc))
        analysis.addObject(ObjectsFem.makeElementRotation1D(doc))

        analysis.addObject(ObjectsFem.makeMaterialFluid(doc))
        mat = analysis.addObject(ObjectsFem.makeMaterialSolid(doc))[0]
        analysis.addObject(ObjectsFem.makeMaterialMechanicalNonlinear(doc, mat))

        msh = analysis.addObject(ObjectsFem.makeMeshGmsh(doc))[0]
        analysis.addObject(ObjectsFem.makeMeshBoundaryLayer(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshGroup(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshRegion(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshNetgen(doc))
        analysis.addObject(ObjectsFem.makeMeshResult(doc))

        analysis.addObject(ObjectsFem.makeResultMechanical(doc))

        analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc))
        analysis.addObject(ObjectsFem.makeSolverCalculix(doc))
        sol = analysis.addObject(ObjectsFem.makeSolverElmer(doc))[0]
        analysis.addObject(ObjectsFem.makeSolverZ88(doc))

        analysis.addObject(ObjectsFem.makeEquationElasticity(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationElectrostatic(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFlow(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFluxsolver(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationHeat(doc, sol))
        # is = 43 (just copy in empty file to test, or run unit test case, it is printed)
        # TODO if the equations and gmsh mesh childs are added to the analysis,
        # they show up twice on Tree (on solver resp. gemsh mesh obj and on analysis)
        # https://forum.freecadweb.org/viewtopic.php?t=25283

        doc.recompute()
        self.assertEqual(len(analysis.Group), testtools.get_defmake_count() - 1)  # because of the analysis itself count -1
Ejemplo n.º 3
0
    def test_femobjects_make(self):
        doc = self.active_doc
        analysis = ObjectsFem.makeAnalysis(doc)

        analysis.addObject(ObjectsFem.makeConstraintBearing(doc))
        analysis.addObject(ObjectsFem.makeConstraintBodyHeatSource(doc))
        analysis.addObject(ObjectsFem.makeConstraintContact(doc))
        analysis.addObject(ObjectsFem.makeConstraintDisplacement(doc))
        analysis.addObject(ObjectsFem.makeConstraintElectrostaticPotential(doc))
        analysis.addObject(ObjectsFem.makeConstraintFixed(doc))
        analysis.addObject(ObjectsFem.makeConstraintFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintFluidBoundary(doc))
        analysis.addObject(ObjectsFem.makeConstraintForce(doc))
        analysis.addObject(ObjectsFem.makeConstraintGear(doc))
        analysis.addObject(ObjectsFem.makeConstraintHeatflux(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintPlaneRotation(doc))
        analysis.addObject(ObjectsFem.makeConstraintPressure(doc))
        analysis.addObject(ObjectsFem.makeConstraintPulley(doc))
        analysis.addObject(ObjectsFem.makeConstraintSelfWeight(doc))
        analysis.addObject(ObjectsFem.makeConstraintTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintTransform(doc))

        analysis.addObject(ObjectsFem.makeElementFluid1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry2D(doc))
        analysis.addObject(ObjectsFem.makeElementRotation1D(doc))

        analysis.addObject(ObjectsFem.makeMaterialFluid(doc))
        mat = analysis.addObject(ObjectsFem.makeMaterialSolid(doc))[0]
        analysis.addObject(ObjectsFem.makeMaterialMechanicalNonlinear(doc, mat))

        msh = analysis.addObject(ObjectsFem.makeMeshGmsh(doc))[0]
        analysis.addObject(ObjectsFem.makeMeshBoundaryLayer(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshGroup(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshRegion(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshNetgen(doc))
        analysis.addObject(ObjectsFem.makeMeshResult(doc))

        analysis.addObject(ObjectsFem.makeResultMechanical(doc))

        analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc))
        analysis.addObject(ObjectsFem.makeSolverCalculix(doc))
        sol = analysis.addObject(ObjectsFem.makeSolverElmer(doc))[0]
        analysis.addObject(ObjectsFem.makeSolverZ88(doc))

        analysis.addObject(ObjectsFem.makeEquationElasticity(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationElectrostatic(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFlow(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFluxsolver(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationHeat(doc, sol))
        # is = 43 (just copy in empty file to test, or run unit test case, it is printed)
        # TODO if the equations and gmsh mesh childs are added to the analysis,
        # they show up twice on Tree (on solver resp. gemsh mesh obj and on analysis)
        # https://forum.freecadweb.org/viewtopic.php?t=25283

        doc.recompute()
        self.assertEqual(len(analysis.Group), testtools.get_defmake_count() - 1)  # because of the analysis itself count -1
Ejemplo n.º 4
0
    def test_femobjects_make(self):
        doc = self.active_doc
        analysis = ObjectsFem.makeAnalysis(doc)

        analysis.addObject(ObjectsFem.makeConstraintBearing(doc))
        analysis.addObject(ObjectsFem.makeConstraintBodyHeatSource(doc))
        analysis.addObject(ObjectsFem.makeConstraintContact(doc))
        analysis.addObject(ObjectsFem.makeConstraintDisplacement(doc))
        analysis.addObject(ObjectsFem.makeConstraintElectrostaticPotential(doc))
        analysis.addObject(ObjectsFem.makeConstraintFixed(doc))
        analysis.addObject(ObjectsFem.makeConstraintFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintFluidBoundary(doc))
        analysis.addObject(ObjectsFem.makeConstraintForce(doc))
        analysis.addObject(ObjectsFem.makeConstraintGear(doc))
        analysis.addObject(ObjectsFem.makeConstraintHeatflux(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintPlaneRotation(doc))
        analysis.addObject(ObjectsFem.makeConstraintPressure(doc))
        analysis.addObject(ObjectsFem.makeConstraintPulley(doc))
        analysis.addObject(ObjectsFem.makeConstraintSelfWeight(doc))
        analysis.addObject(ObjectsFem.makeConstraintTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintTransform(doc))

        analysis.addObject(ObjectsFem.makeElementFluid1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry2D(doc))
        analysis.addObject(ObjectsFem.makeElementRotation1D(doc))

        analysis.addObject(ObjectsFem.makeMaterialFluid(doc))
        mat = analysis.addObject(ObjectsFem.makeMaterialSolid(doc))[0]
        analysis.addObject(ObjectsFem.makeMaterialMechanicalNonlinear(doc, mat))

        msh = analysis.addObject(ObjectsFem.makeMeshGmsh(doc))[0]
        analysis.addObject(ObjectsFem.makeMeshBoundaryLayer(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshGroup(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshRegion(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshNetgen(doc))
        analysis.addObject(ObjectsFem.makeMeshResult(doc))

        analysis.addObject(ObjectsFem.makeResultMechanical(doc))

        analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc))
        analysis.addObject(ObjectsFem.makeSolverCalculix(doc))
        sol = analysis.addObject(ObjectsFem.makeSolverElmer(doc))[0]
        analysis.addObject(ObjectsFem.makeSolverZ88(doc))

        analysis.addObject(ObjectsFem.makeEquationElasticity(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationElectrostatic(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFlow(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFluxsolver(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationHeat(doc, sol))
        # TODO the equations show up twice on Tree (on solver and on analysis), if they are added to the analysis group

        doc.recompute()
        self.assertEqual(len(analysis.Group), testtools.get_defmake_count() - 1)  # because of the analysis itself count -1
Ejemplo n.º 5
0
def setup(doc=None, solvertype="ccxtools"):
    # setup box static, add a fixed, force and a pressure constraint

    doc = setup_base(doc, solvertype)
    geom_obj = doc.Box
    analysis = doc.Analysis

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    elif solvertype == "elmer":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverElmer(doc, "SolverElmer"))[0]
        ObjectsFem.makeEquationElasticity(doc, solver_object)
    elif solvertype == "z88":
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, "SolverZ88"))
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="FemConstraintFixed"))[0]
    fixed_constraint.References = [(geom_obj, "Face1")]

    # force_constraint
    force_constraint = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="FemConstraintForce"))[0]
    force_constraint.References = [(geom_obj, "Face6")]
    force_constraint.Force = 40000.0
    force_constraint.Direction = (geom_obj, ["Edge5"])
    force_constraint.Reversed = True

    # pressure_constraint
    pressure_constraint = analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc,
                                          name="FemConstraintPressure"))[0]
    pressure_constraint.References = [(geom_obj, "Face2")]
    pressure_constraint.Pressure = 1000.0
    pressure_constraint.Reversed = False

    doc.recompute()
    return doc
Ejemplo n.º 6
0
def setup_static(doc=None, solver="ccxtools"):
    # setup box static, add a fixed, force and a pressure constraint

    doc = setup_base(doc, solver)
    box_obj = doc.Box
    analysis = doc.Analysis

    # solver
    # TODO How to pass multiple solver for one analysis in one doc
    if solver == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
        )[0]
    elif solver == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools")
        )[0]
        solver_object.WorkingDir = u""
    elif solver == "elmer":
        analysis.addObject(ObjectsFem.makeSolverElmer(doc, "SolverElmer"))
    elif solver == "z88":
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, "SolverZ88"))
    if solver == "calculix" or solver == "ccxtools":
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="FemConstraintFixed")
    )[0]
    fixed_constraint.References = [(box_obj, "Face1")]

    # force_constraint
    force_constraint = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="FemConstraintForce")
    )[0]
    force_constraint.References = [(box_obj, "Face6")]
    force_constraint.Force = 40000.0
    force_constraint.Direction = (box_obj, ["Edge5"])
    force_constraint.Reversed = True

    # pressure_constraint
    pressure_constraint = analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc, name="FemConstraintPressure")
    )[0]
    pressure_constraint.References = [(box_obj, "Face2")]
    pressure_constraint.Pressure = 1000.0
    pressure_constraint.Reversed = False

    doc.recompute()
    return doc
Ejemplo n.º 7
0
    def test_femobjects_derivedfromstd(self):
        # only the last True type is used
        doc = self.active_doc

        self.assertTrue(ObjectsFem.makeAnalysis(doc).isDerivedFrom('Fem::FemAnalysis'))
        self.assertTrue(ObjectsFem.makeConstraintBearing(doc).isDerivedFrom('Fem::ConstraintBearing'))
        self.assertTrue(ObjectsFem.makeConstraintBodyHeatSource(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintContact(doc).isDerivedFrom('Fem::ConstraintContact'))
        self.assertTrue(ObjectsFem.makeConstraintDisplacement(doc).isDerivedFrom('Fem::ConstraintDisplacement'))
        self.assertTrue(ObjectsFem.makeConstraintElectrostaticPotential(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintFixed(doc).isDerivedFrom('Fem::ConstraintFixed'))
        self.assertTrue(ObjectsFem.makeConstraintFlowVelocity(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintFluidBoundary(doc).isDerivedFrom('Fem::ConstraintFluidBoundary'))
        self.assertTrue(ObjectsFem.makeConstraintForce(doc).isDerivedFrom('Fem::ConstraintForce'))
        self.assertTrue(ObjectsFem.makeConstraintGear(doc).isDerivedFrom('Fem::ConstraintGear'))
        self.assertTrue(ObjectsFem.makeConstraintHeatflux(doc).isDerivedFrom('Fem::ConstraintHeatflux'))
        self.assertTrue(ObjectsFem.makeConstraintInitialFlowVelocity(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintInitialTemperature(doc).isDerivedFrom('Fem::ConstraintInitialTemperature'))
        self.assertTrue(ObjectsFem.makeConstraintPlaneRotation(doc).isDerivedFrom('Fem::ConstraintPlaneRotation'))
        self.assertTrue(ObjectsFem.makeConstraintPressure(doc).isDerivedFrom('Fem::ConstraintPressure'))
        self.assertTrue(ObjectsFem.makeConstraintPulley(doc).isDerivedFrom('Fem::ConstraintPulley'))
        self.assertTrue(ObjectsFem.makeConstraintSelfWeight(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintTemperature(doc).isDerivedFrom('Fem::ConstraintTemperature'))
        self.assertTrue(ObjectsFem.makeConstraintTransform(doc).isDerivedFrom('Fem::ConstraintTransform'))
        self.assertTrue(ObjectsFem.makeElementFluid1D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementGeometry1D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementGeometry2D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementRotation1D(doc).isDerivedFrom('Fem::FeaturePython'))
        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        self.assertTrue(ObjectsFem.makeMaterialFluid(doc).isDerivedFrom('App::MaterialObjectPython'))
        self.assertTrue(materialsolid.isDerivedFrom('App::MaterialObjectPython'))
        self.assertTrue(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid).isDerivedFrom('Fem::FeaturePython'))
        mesh = ObjectsFem.makeMeshGmsh(doc)
        self.assertTrue(mesh.isDerivedFrom('Fem::FemMeshObjectPython'))
        self.assertTrue(ObjectsFem.makeMeshBoundaryLayer(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshGroup(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshRegion(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshNetgen(doc).isDerivedFrom('Fem::FemMeshShapeNetgenObject'))
        self.assertTrue(ObjectsFem.makeMeshResult(doc).isDerivedFrom('Fem::FemMeshObjectPython'))
        self.assertTrue(ObjectsFem.makeResultMechanical(doc).isDerivedFrom('Fem::FemResultObjectPython'))
        solverelmer = ObjectsFem.makeSolverElmer(doc)
        self.assertTrue(ObjectsFem.makeSolverCalculixCcxTools(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeSolverCalculix(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(solverelmer.isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeSolverZ88(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeEquationElasticity(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationElectrostatic(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationFlow(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationFluxsolver(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationHeat(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
Ejemplo n.º 8
0
    def test_femobjects_derivedfromstd(self):
        # only the last True type is used
        doc = self.active_doc

        self.assertTrue(ObjectsFem.makeAnalysis(doc).isDerivedFrom('Fem::FemAnalysis'))
        self.assertTrue(ObjectsFem.makeConstraintBearing(doc).isDerivedFrom('Fem::ConstraintBearing'))
        self.assertTrue(ObjectsFem.makeConstraintBodyHeatSource(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintContact(doc).isDerivedFrom('Fem::ConstraintContact'))
        self.assertTrue(ObjectsFem.makeConstraintDisplacement(doc).isDerivedFrom('Fem::ConstraintDisplacement'))
        self.assertTrue(ObjectsFem.makeConstraintElectrostaticPotential(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintFixed(doc).isDerivedFrom('Fem::ConstraintFixed'))
        self.assertTrue(ObjectsFem.makeConstraintFlowVelocity(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintFluidBoundary(doc).isDerivedFrom('Fem::ConstraintFluidBoundary'))
        self.assertTrue(ObjectsFem.makeConstraintForce(doc).isDerivedFrom('Fem::ConstraintForce'))
        self.assertTrue(ObjectsFem.makeConstraintGear(doc).isDerivedFrom('Fem::ConstraintGear'))
        self.assertTrue(ObjectsFem.makeConstraintHeatflux(doc).isDerivedFrom('Fem::ConstraintHeatflux'))
        self.assertTrue(ObjectsFem.makeConstraintInitialFlowVelocity(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintInitialTemperature(doc).isDerivedFrom('Fem::ConstraintInitialTemperature'))
        self.assertTrue(ObjectsFem.makeConstraintPlaneRotation(doc).isDerivedFrom('Fem::ConstraintPlaneRotation'))
        self.assertTrue(ObjectsFem.makeConstraintPressure(doc).isDerivedFrom('Fem::ConstraintPressure'))
        self.assertTrue(ObjectsFem.makeConstraintPulley(doc).isDerivedFrom('Fem::ConstraintPulley'))
        self.assertTrue(ObjectsFem.makeConstraintSelfWeight(doc).isDerivedFrom('Fem::ConstraintPython'))
        self.assertTrue(ObjectsFem.makeConstraintTemperature(doc).isDerivedFrom('Fem::ConstraintTemperature'))
        self.assertTrue(ObjectsFem.makeConstraintTransform(doc).isDerivedFrom('Fem::ConstraintTransform'))
        self.assertTrue(ObjectsFem.makeElementFluid1D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementGeometry1D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementGeometry2D(doc).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeElementRotation1D(doc).isDerivedFrom('Fem::FeaturePython'))
        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        self.assertTrue(ObjectsFem.makeMaterialFluid(doc).isDerivedFrom('App::MaterialObjectPython'))
        self.assertTrue(materialsolid.isDerivedFrom('App::MaterialObjectPython'))
        self.assertTrue(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid).isDerivedFrom('Fem::FeaturePython'))
        mesh = ObjectsFem.makeMeshGmsh(doc)
        self.assertTrue(mesh.isDerivedFrom('Fem::FemMeshObjectPython'))
        self.assertTrue(ObjectsFem.makeMeshBoundaryLayer(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshGroup(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshRegion(doc, mesh).isDerivedFrom('Fem::FeaturePython'))
        self.assertTrue(ObjectsFem.makeMeshNetgen(doc).isDerivedFrom('Fem::FemMeshShapeNetgenObject'))
        self.assertTrue(ObjectsFem.makeMeshResult(doc).isDerivedFrom('Fem::FemMeshObjectPython'))
        self.assertTrue(ObjectsFem.makeResultMechanical(doc).isDerivedFrom('Fem::FemResultObjectPython'))
        solverelmer = ObjectsFem.makeSolverElmer(doc)
        self.assertTrue(ObjectsFem.makeSolverCalculixCcxTools(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeSolverCalculix(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(solverelmer.isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeSolverZ88(doc).isDerivedFrom('Fem::FemSolverObjectPython'))
        self.assertTrue(ObjectsFem.makeEquationElasticity(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationElectrostatic(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationFlow(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationFluxsolver(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
        self.assertTrue(ObjectsFem.makeEquationHeat(doc, solverelmer).isDerivedFrom('App::FeaturePython'))
Ejemplo n.º 9
0
    def test_femobjects_isoftype(self):
        doc = self.active_doc

        from femtools.femutils import is_of_type
        self.assertTrue(is_of_type(ObjectsFem.makeAnalysis(doc), 'Fem::FemAnalysis'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintBearing(doc), 'Fem::ConstraintBearing'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintBodyHeatSource(doc), 'Fem::ConstraintBodyHeatSource'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintContact(doc), 'Fem::ConstraintContact'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintDisplacement(doc), 'Fem::ConstraintDisplacement'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintElectrostaticPotential(doc), 'Fem::ConstraintElectrostaticPotential'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFixed(doc), 'Fem::ConstraintFixed'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFlowVelocity(doc), 'Fem::ConstraintFlowVelocity'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFluidBoundary(doc), 'Fem::ConstraintFluidBoundary'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintForce(doc), 'Fem::ConstraintForce'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintGear(doc), 'Fem::ConstraintGear'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintHeatflux(doc), 'Fem::ConstraintHeatflux'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintInitialFlowVelocity(doc), 'Fem::ConstraintInitialFlowVelocity'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintInitialTemperature(doc), 'Fem::ConstraintInitialTemperature'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPlaneRotation(doc), 'Fem::ConstraintPlaneRotation'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPressure(doc), 'Fem::ConstraintPressure'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPulley(doc), 'Fem::ConstraintPulley'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintSelfWeight(doc), 'Fem::ConstraintSelfWeight'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintTemperature(doc), 'Fem::ConstraintTemperature'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintTransform(doc), 'Fem::ConstraintTransform'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementFluid1D(doc), 'Fem::FemElementFluid1D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementGeometry1D(doc), 'Fem::FemElementGeometry1D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementGeometry2D(doc), 'Fem::FemElementGeometry2D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementRotation1D(doc), 'Fem::FemElementRotation1D'))
        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        self.assertTrue(is_of_type(ObjectsFem.makeMaterialFluid(doc), 'Fem::Material'))
        self.assertTrue(is_of_type(materialsolid, 'Fem::Material'))
        self.assertTrue(is_of_type(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid), 'Fem::MaterialMechanicalNonlinear'))
        mesh = ObjectsFem.makeMeshGmsh(doc)
        self.assertTrue(is_of_type(mesh, 'Fem::FemMeshGmsh'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshBoundaryLayer(doc, mesh), 'Fem::FemMeshBoundaryLayer'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshGroup(doc, mesh), 'Fem::FemMeshGroup'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshRegion(doc, mesh), 'Fem::FemMeshRegion'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshNetgen(doc), 'Fem::FemMeshShapeNetgenObject'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshResult(doc), 'Fem::FemMeshResult'))
        self.assertTrue(is_of_type(ObjectsFem.makeResultMechanical(doc), 'Fem::FemResultMechanical'))
        solverelmer = ObjectsFem.makeSolverElmer(doc)
        self.assertTrue(is_of_type(ObjectsFem.makeSolverCalculixCcxTools(doc), 'Fem::FemSolverCalculixCcxTools'))
        self.assertTrue(is_of_type(ObjectsFem.makeSolverCalculix(doc), 'Fem::FemSolverObjectCalculix'))
        self.assertTrue(is_of_type(solverelmer, 'Fem::FemSolverObjectElmer'))
        self.assertTrue(is_of_type(ObjectsFem.makeSolverZ88(doc), 'Fem::FemSolverObjectZ88'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationElasticity(doc, solverelmer), 'Fem::FemEquationElmerElasticity'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationElectrostatic(doc, solverelmer), 'Fem::FemEquationElmerElectrostatic'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationFlow(doc, solverelmer), 'Fem::FemEquationElmerFlow'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationFluxsolver(doc, solverelmer), 'Fem::FemEquationElmerFluxsolver'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationHeat(doc, solverelmer), 'Fem::FemEquationElmerHeat'))
Ejemplo n.º 10
0
    def test_femobjects_isoftype(self):
        doc = self.active_doc

        from femtools.femutils import is_of_type
        self.assertTrue(is_of_type(ObjectsFem.makeAnalysis(doc), 'Fem::FemAnalysis'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintBearing(doc), 'Fem::ConstraintBearing'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintBodyHeatSource(doc), 'Fem::ConstraintBodyHeatSource'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintContact(doc), 'Fem::ConstraintContact'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintDisplacement(doc), 'Fem::ConstraintDisplacement'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintElectrostaticPotential(doc), 'Fem::ConstraintElectrostaticPotential'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFixed(doc), 'Fem::ConstraintFixed'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFlowVelocity(doc), 'Fem::ConstraintFlowVelocity'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintFluidBoundary(doc), 'Fem::ConstraintFluidBoundary'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintForce(doc), 'Fem::ConstraintForce'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintGear(doc), 'Fem::ConstraintGear'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintHeatflux(doc), 'Fem::ConstraintHeatflux'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintInitialFlowVelocity(doc), 'Fem::ConstraintInitialFlowVelocity'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintInitialTemperature(doc), 'Fem::ConstraintInitialTemperature'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPlaneRotation(doc), 'Fem::ConstraintPlaneRotation'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPressure(doc), 'Fem::ConstraintPressure'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintPulley(doc), 'Fem::ConstraintPulley'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintSelfWeight(doc), 'Fem::ConstraintSelfWeight'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintTemperature(doc), 'Fem::ConstraintTemperature'))
        self.assertTrue(is_of_type(ObjectsFem.makeConstraintTransform(doc), 'Fem::ConstraintTransform'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementFluid1D(doc), 'Fem::FemElementFluid1D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementGeometry1D(doc), 'Fem::FemElementGeometry1D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementGeometry2D(doc), 'Fem::FemElementGeometry2D'))
        self.assertTrue(is_of_type(ObjectsFem.makeElementRotation1D(doc), 'Fem::FemElementRotation1D'))
        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        self.assertTrue(is_of_type(ObjectsFem.makeMaterialFluid(doc), 'Fem::Material'))
        self.assertTrue(is_of_type(materialsolid, 'Fem::Material'))
        self.assertTrue(is_of_type(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid), 'Fem::MaterialMechanicalNonlinear'))
        mesh = ObjectsFem.makeMeshGmsh(doc)
        self.assertTrue(is_of_type(mesh, 'Fem::FemMeshGmsh'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshBoundaryLayer(doc, mesh), 'Fem::FemMeshBoundaryLayer'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshGroup(doc, mesh), 'Fem::FemMeshGroup'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshRegion(doc, mesh), 'Fem::FemMeshRegion'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshNetgen(doc), 'Fem::FemMeshShapeNetgenObject'))
        self.assertTrue(is_of_type(ObjectsFem.makeMeshResult(doc), 'Fem::FemMeshResult'))
        self.assertTrue(is_of_type(ObjectsFem.makeResultMechanical(doc), 'Fem::FemResultMechanical'))
        solverelmer = ObjectsFem.makeSolverElmer(doc)
        self.assertTrue(is_of_type(ObjectsFem.makeSolverCalculixCcxTools(doc), 'Fem::FemSolverCalculixCcxTools'))
        self.assertTrue(is_of_type(ObjectsFem.makeSolverCalculix(doc), 'Fem::FemSolverObjectCalculix'))
        self.assertTrue(is_of_type(solverelmer, 'Fem::FemSolverObjectElmer'))
        self.assertTrue(is_of_type(ObjectsFem.makeSolverZ88(doc), 'Fem::FemSolverObjectZ88'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationElasticity(doc, solverelmer), 'Fem::FemEquationElmerElasticity'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationElectrostatic(doc, solverelmer), 'Fem::FemEquationElmerElectrostatic'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationFlow(doc, solverelmer), 'Fem::FemEquationElmerFlow'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationFluxsolver(doc, solverelmer), 'Fem::FemEquationElmerFluxsolver'))
        self.assertTrue(is_of_type(ObjectsFem.makeEquationHeat(doc, solverelmer), 'Fem::FemEquationElmerHeat'))
Ejemplo n.º 11
0
 def test_adding_refshaps(self):
     doc = self.active_doc
     slab = doc.addObject("Part::Plane", "Face")
     slab.Length = 500.00
     slab.Width = 500.00
     cf = ObjectsFem.makeConstraintFixed(doc)
     ref_eles = []
     # FreeCAD list property seam not to support append, thus we need some workaround, which is on many elements even much faster
     for i, face in enumerate(slab.Shape.Edges):
         ref_eles.append("Edge%d" % (i + 1))
     cf.References = [(slab, ref_eles)]
     doc.recompute()
     expected_reflist = [(slab, ('Edge1', 'Edge2', 'Edge3', 'Edge4'))]
     assert_err_message = 'Adding reference shapes did not result in expected list ' + str(cf.References) + ' != ' + str(expected_reflist)
     self.assertEqual(cf.References, expected_reflist, assert_err_message)
Ejemplo n.º 12
0
 def test_adding_refshaps(self):
     doc = self.active_doc
     slab = doc.addObject("Part::Plane", "Face")
     slab.Length = 500.00
     slab.Width = 500.00
     cf = ObjectsFem.makeConstraintFixed(doc)
     ref_eles = []
     # FreeCAD list property seam not to support append, thus we need some workaround, which is on many elements even much faster
     for i, face in enumerate(slab.Shape.Edges):
         ref_eles.append("Edge%d" % (i + 1))
     cf.References = [(slab, ref_eles)]
     doc.recompute()
     expected_reflist = [(slab, ('Edge1', 'Edge2', 'Edge3', 'Edge4'))]
     assert_err_message = 'Adding reference shapes did not result in expected list ' + str(cf.References) + ' != ' + str(expected_reflist)
     self.assertEqual(cf.References, expected_reflist, assert_err_message)
Ejemplo n.º 13
0
 def test_adding_refshaps(self):
     doc = self.document
     slab = doc.addObject("Part::Plane", "Face")
     slab.Length = 500.00
     slab.Width = 500.00
     cf = ObjectsFem.makeConstraintFixed(doc)
     ref_eles = []
     # FreeCAD list property doesn't seem to support append,
     # thus we need a workaround
     # which on many elements is even much faster
     for i, face in enumerate(slab.Shape.Edges):
         ref_eles.append("Edge%d" % (i + 1))
     cf.References = [(slab, ref_eles)]
     doc.recompute()
     expected_reflist = [(slab, ("Edge1", "Edge2", "Edge3", "Edge4"))]
     assert_err_message = (
         "Adding reference shapes did not result in expected list {} != {}".
         format(cf.References, expected_reflist))
     self.assertEqual(cf.References, expected_reflist, assert_err_message)
Ejemplo n.º 14
0
    def create_constraints(self, force_quant=100.0):
        force_constraint = ObjectsFem.makeConstraintForce(self.doc, "FemForceConstraint")

        force_references = []
        for face in self.force_faces:
            force_references.append((self.doc.Geometry, face))
            # print "FORCE-REFERENCES : ", force_references

        force_constraint.References = force_references
        force_constraint.Force = force_quant
        force_constraint.Direction = (self.doc.Geometry, self.force_dir)

        fixed_constraint = ObjectsFem.makeConstraintFixed(self.doc, "FemFixedConstraint")
        fixed_references = []
        for face in self.fixed_faces:
            fixed_references.append((self.doc.Geometry, face))
            fixed_constraint.References = fixed_references

        self.analysis.addObject(force_constraint)
        self.analysis.addObject(fixed_constraint)
def setup(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # explanation object
    # just keep the following line and change text string in get_explanation method
    manager.add_explanation_obj(
        doc, get_explanation(manager.get_header(get_information())))

    # geometric object
    # name is important because the other method in this module use obj name
    l1 = Part.makeLine((-142.5, -142.5, 0), (142.5, -142.5, 0))
    l2 = Part.makeLine((142.5, -142.5, 0), (142.5, 142.5, 0))
    l3 = Part.makeLine((142.5, 142.5, 0), (-142.5, 142.5, 0))
    l4 = Part.makeLine((-142.5, 142.5, 0), (-142.5, -142.5, 0))
    wire = Part.Wire([l1, l2, l3, l4])
    shape = wire.extrude(Vector(0, 0, 1000))
    geom_obj = doc.addObject('Part::Feature', 'SquareTube')
    geom_obj.Shape = shape
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.SplitInputWriter = False
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
    analysis.addObject(solver_obj)

    # shell thickness
    thickness_obj = ObjectsFem.makeElementGeometry2D(doc, 15.0,
                                                     "ShellThickness")
    analysis.addObject(thickness_obj)

    # material
    material_obj = ObjectsFem.makeMaterialSolid(doc, "FemMaterial")
    mat = material_obj.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    con_fixed.References = [(doc.SquareTube, "Edge4"),
                            (doc.SquareTube, "Edge7"),
                            (doc.SquareTube, "Edge10"),
                            (doc.SquareTube, "Edge12")]
    analysis.addObject(con_fixed)

    # con_force1
    con_force1 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce1")
    con_force1.References = [(geom_obj, "Edge9")]
    con_force1.Force = 100000.00
    con_force1.Direction = (geom_obj, ["Edge9"])
    con_force1.Reversed = True
    analysis.addObject(con_force1)

    # con_force2
    con_force2 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce2")
    con_force2.References = [(geom_obj, "Edge3")]
    con_force2.Force = 100000.00
    con_force2.Direction = (geom_obj, ["Edge3"])
    con_force2.Reversed = True
    analysis.addObject(con_force2)

    # con_force3
    con_force3 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce3")
    con_force3.References = [(geom_obj, "Edge11")]
    con_force3.Force = 100000.00
    con_force3.Direction = (geom_obj, ["Edge11"])
    con_force3.Reversed = True
    analysis.addObject(con_force3)

    # con_force4
    con_force4 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce4")
    con_force4.References = [(geom_obj, "Edge6")]
    con_force4.Force = 100000.00
    con_force4.Direction = (geom_obj, ["Edge6"])
    con_force4.Reversed = True
    analysis.addObject(con_force4)

    # mesh
    from .meshes.mesh_square_pipe_end_twisted_tria6 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        ObjectsFem.makeMeshGmsh(doc, get_meshname()))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 16
0
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # parts
    # bottom box
    bottom_box_obj = doc.addObject("Part::Box", "BottomBox")
    bottom_box_obj.Length = 100
    bottom_box_obj.Width = 25
    bottom_box_obj.Height = 500
    bottom_box_obj.Placement = FreeCAD.Placement(
        Vector(186, 0, -247),
        Rotation(0, 0, 0),
        Vector(0, 0, 0),
    )
    doc.recompute()

    # top half cylinder, https://forum.freecadweb.org/viewtopic.php?f=18&t=43001#p366111
    top_halfcyl_obj = doc.addObject("Part::Cylinder", "TopHalfCylinder")
    top_halfcyl_obj.Radius = 30
    top_halfcyl_obj.Height = 500
    top_halfcyl_obj.Angle = 180
    top_halfcyl_sh = Part.getShape(top_halfcyl_obj,
                                   '',
                                   needSubElement=False,
                                   refine=True)
    top_halfcyl_obj.Shape = top_halfcyl_sh
    top_halfcyl_obj.Placement = FreeCAD.Placement(
        Vector(0, -42, 0),
        Rotation(0, 90, 0),
        Vector(0, 0, 0),
    )
    doc.recompute()

    # all geom fusion
    all_geom_fusion_obj = doc.addObject("Part::MultiFuse", "AllGeomFusion")
    all_geom_fusion_obj.Shapes = [bottom_box_obj, top_halfcyl_obj]
    if FreeCAD.GuiUp:
        bottom_box_obj.ViewObject.hide()
        top_halfcyl_obj.ViewObject.hide()
    doc.recompute()

    if FreeCAD.GuiUp:
        import FreeCADGui
        FreeCADGui.ActiveDocument.activeView().viewAxonometric()
        FreeCADGui.SendMsgToActiveView("ViewFit")

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False
        solver_object.SplitInputWriter = False
        """
        # solver parameter from fandaL, but they are not needed (see forum topic)
        solver_object.IterationsControlParameterTimeUse = True
        solver_object.IterationsControlParameterCutb = '0.25,0.5,0.75,0.85,,,1.5,'
        solver_object.IterationsControlParameterIter = '4,8,9,200,10,400,,200,,'
        solver_object.IterationsUserDefinedTimeStepLength = True
        solver_object.TimeInitialStep = 0.1
        solver_object.TimeEnd = 1.0
        solver_object.IterationsUserDefinedIncrementations = True  # parameter DIRECT
        """

    # material
    material_obj = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterial"))[0]
    mat = material_obj.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed"))[0]
    con_fixed.References = [
        (all_geom_fusion_obj, "Face5"),
        (all_geom_fusion_obj, "Face6"),
        (all_geom_fusion_obj, "Face8"),
        (all_geom_fusion_obj, "Face9"),
    ]

    # constraint pressure
    con_pressure = analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc, name="ConstraintPressure"))[0]
    con_pressure.References = [(all_geom_fusion_obj, "Face10")]
    con_pressure.Pressure = 100.0  # Pa ? = 100 Mpa ?
    con_pressure.Reversed = False

    # constraint contact
    con_contact = doc.Analysis.addObject(
        ObjectsFem.makeConstraintContact(doc, name="ConstraintContact"))[0]
    con_contact.References = [
        (all_geom_fusion_obj,
         "Face7"),  # first seams slave face, TODO proof in writer code!
        (all_geom_fusion_obj,
         "Face3"),  # second seams master face, TODO proof in writer code!
    ]
    con_contact.Friction = 0.0
    con_contact.Slope = 1000000.0  # contact stiffness 1000000.0 kg/(mm*s^2)

    # mesh
    from .meshes.mesh_contact_box_halfcylinder_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
def setup(doc=None, solvertype="ccxtools"):

    if doc is None:
        doc = init_doc()

    # geometry object
    # name is important because the other method in this module use obj name
    # parts
    face_obj1 = doc.addObject('Part::Plane', 'Face1')
    face_obj1.Width = 10
    face_obj1.Length = 20
    face_obj2 = doc.addObject('Part::Plane', 'Face2')
    face_obj2.Width = 10
    face_obj2.Length = 20
    face_obj2.Placement.Base = (20, 0, 0)
    face_obj3 = doc.addObject('Part::Plane', 'Face3')
    face_obj3.Width = 10
    face_obj3.Length = 20
    face_obj3.Placement.Base = (40, 0, 0)
    face_obj4 = doc.addObject('Part::Plane', 'Face4')
    face_obj4.Width = 10
    face_obj4.Length = 20
    face_obj4.Placement.Base = (60, 0, 0)
    face_obj5 = doc.addObject('Part::Plane', 'Face5')
    face_obj5.Width = 10
    face_obj5.Length = 20
    face_obj5.Placement.Base = (80, 0, 0)
    doc.recompute()

    # make a Shell out of the facees, to be able to remesh with GUI
    geom_obj = doc.addObject("Part::MultiFuse", "Fusion")
    geom_obj.Shapes = [face_obj1, face_obj2, face_obj3, face_obj4, face_obj5]
    if FreeCAD.GuiUp:
        face_obj1.ViewObject.hide()
        face_obj2.ViewObject.hide()
        face_obj3.ViewObject.hide()
        face_obj4.ViewObject.hide()
        face_obj5.ViewObject.hide()
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # shell thickness
    analysis.addObject(
        ObjectsFem.makeElementGeometry2D(doc, 10, 'ShellThickness'))

    # materials
    # material1
    material_object1 = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, 'FemMaterial1'))[0]
    material_object1.References = [(doc.Face3, "Face1")]
    mat = material_object1.Material
    mat['Name'] = "Concrete-Generic"
    mat['YoungsModulus'] = "32000 MPa"
    mat['PoissonRatio'] = "0.17"
    mat['Density'] = "0 kg/m^3"
    material_object1.Material = mat

    # material2
    material_object2 = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, 'FemMaterial2'))[0]
    material_object2.References = [(doc.Face2, "Face1"), (doc.Face4, "Face1")]
    mat = material_object2.Material
    mat['Name'] = "PLA"
    mat['YoungsModulus'] = "3640 MPa"
    mat['PoissonRatio'] = "0.36"
    mat['Density'] = "0 kg/m^3"
    material_object2.Material = mat

    # material3
    material_object3 = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, 'FemMaterial3'))[0]
    material_object3.References = []
    mat = material_object3.Material
    mat['Name'] = "Steel-Generic"
    mat['YoungsModulus'] = "200000 MPa"
    mat['PoissonRatio'] = "0.30"
    mat['Density'] = "7900 kg/m^3"
    material_object3.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(doc.Face1, "Edge1"), (doc.Face5, "Edge3")]

    # force_constraint
    force_constraint = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce"))[0]
    force_constraint.References = [(doc.Face1, "Edge4"), (doc.Face2, "Edge4"),
                                   (doc.Face3, "Edge4"), (doc.Face4, "Edge4"),
                                   (doc.Face5, "Edge4")]
    force_constraint.Force = 10000.00
    force_constraint.Direction = (doc.Face1, ["Edge1"])
    force_constraint.Reversed = True

    # mesh
    from .meshes.mesh_multibodybeam_tria6 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(ObjectsFem.makeMeshGmsh(doc,
                                                             mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # parts
    # TODO turn circle of upper tube to have the line on the other side
    # make a boolean fragment of them to be sure there is a mesh point on remesh
    # but as long as we do not remesh it works without the boolean fragment too
    # tubes
    tube_radius = 25
    tube_length = 500
    sh_lower_circle = Part.Wire(Part.makeCircle(tube_radius))
    sh_lower_tube = sh_lower_circle.extrude(FreeCAD.Vector(0, 0, tube_length))
    sh_lower_tube.reverse()
    lower_tube = doc.addObject("Part::Feature", "Lower_tube")
    lower_tube.Shape = sh_lower_tube

    sh_upper_circle = Part.Wire(Part.makeCircle(tube_radius))
    sh_upper_tube = sh_upper_circle.extrude(FreeCAD.Vector(0, 0, tube_length))
    sh_upper_tube.reverse()
    upper_tube = doc.addObject("Part::Feature", "Upper_tube")
    upper_tube.Shape = sh_upper_tube
    upper_tube.Placement = FreeCAD.Placement(
        FreeCAD.Vector(-25, 51, 475),
        FreeCAD.Rotation(90, 0, 90),
        FreeCAD.Vector(0, 0, 0),
    )

    # point for load
    v_force_pt = FreeCAD.Vector(0, 76, 475)
    sh_force_point = Part.Vertex(v_force_pt)
    force_point = doc.addObject("Part::Feature", "Load_place_point")
    force_point.Shape = sh_force_point
    if FreeCAD.GuiUp:
        force_point.ViewObject.PointSize = 10.0
        force_point.ViewObject.PointColor = (1.0, 0.0, 0.0)

    BooleanFrag = BOPTools.SplitFeatures.makeBooleanFragments(
        name='BooleanFragments')
    BooleanFrag.Objects = [upper_tube, force_point]
    if FreeCAD.GuiUp:
        upper_tube.ViewObject.hide()

    compound = doc.addObject("Part::Compound", "Compound")
    compound.Links = [BooleanFrag, lower_tube]

    # line for load direction
    sh_load_line = Part.makeLine(v_force_pt, FreeCAD.Vector(0, 150, 475))
    load_line = doc.addObject("Part::Feature", "Load_direction_line")
    load_line.Shape = sh_load_line
    if FreeCAD.GuiUp:
        load_line.ViewObject.LineWidth = 5.0
        load_line.ViewObject.LineColor = (1.0, 0.0, 0.0)

    doc.recompute()

    if FreeCAD.GuiUp:
        import FreeCADGui
        FreeCADGui.ActiveDocument.activeView().viewAxonometric()
        FreeCADGui.SendMsgToActiveView("ViewFit")

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.AnalysisType = "static"
        solver_object.BeamShellResultOutput3D = True
        solver_object.GeometricalNonlinearity = "linear"  # really?
        # TODO iterations parameter !!!
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False
        solver_object.SplitInputWriter = False

    # shell thickness
    analysis.addObject(
        ObjectsFem.makeElementGeometry2D(doc, 0.5, 'ShellThickness'))

    # material
    material_obj = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterial"))[0]
    mat = material_obj.Material
    mat["Name"] = "AlCuMgPb"
    mat["YoungsModulus"] = "72000 MPa"
    mat["PoissonRatio"] = "0.30"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed"))[0]
    fixed_constraint.References = [
        (lower_tube, "Edge2"),
        (upper_tube, "Edge3"),
    ]

    # force_constraint
    force_constraint = doc.Analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce"))[0]
    # TODO use point of tube boolean fragment
    force_constraint.References = [(force_point, "Vertex1")]
    force_constraint.Force = 5000.0
    force_constraint.Direction = (load_line, ["Edge1"])
    force_constraint.Reversed = True

    # contact constraint
    contact_constraint = doc.Analysis.addObject(
        ObjectsFem.makeConstraintContact(doc, name="ConstraintContact"))[0]
    contact_constraint.References = [
        (lower_tube, "Face1"),
        (upper_tube, "Face1"),
    ]
    contact_constraint.Friction = 0.0
    # contact_constrsh_aint.Slope = "1000000.0 kg/(mm*s^2)"  # contact stiffness
    contact_constraint.Slope = 1000000.0  # should be 1000000.0 kg/(mm*s^2)

    # mesh
    from .meshes.mesh_contact_tube_tube_tria3 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 19
0
def setup_cantileverbase(doc=None, solver='ccxtools'):
    # setup CalculiX cantilever base model

    if doc is None:
        doc = init_doc()

    # part
    box_obj = doc.addObject('Part::Box', 'Box')
    box_obj.Height = box_obj.Width = 1000
    box_obj.Length = 8000

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, 'Analysis')

    solver
    # TODO How to pass multiple solver for one analysis in one doc
    if solver is None:
        pass  # no solver is added
    elif solver is 'calculix':
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, 'SolverCalculiX'))[0]
        solver_object.AnalysisType = 'static'
        solver_object.GeometricalNonlinearity = 'linear'
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = 'default'
        solver_object.IterationsControlParameterTimeUse = False
    elif solver is 'ccxtools':
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, 'CalculiXccxTools'))[0]
        solver_object.AnalysisType = 'static'
        solver_object.GeometricalNonlinearity = 'linear'
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = 'default'
        solver_object.IterationsControlParameterTimeUse = False
        solver_object.WorkingDir = u''
    elif solver is 'elmer':
        analysis.addObject(ObjectsFem.makeSolverElmer(doc, 'SolverElmer'))
    elif solver is 'z88':
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, 'SolverZ88'))

    # material
    material_object = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, 'FemMaterial'))[0]
    mat = material_object.Material
    mat['Name'] = "CalculiX-Steel"
    mat['YoungsModulus'] = "210000 MPa"
    mat['PoissonRatio'] = "0.30"
    mat['Density'] = "7900 kg/m^3"
    mat['ThermalExpansionCoefficient'] = "0.012 mm/m/K"
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(doc.Box, "Face1")]

    # mesh
    from femexamples.meshes.mesh_canticcx_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        print('ERROR on creating nodes')
    control = create_elements(fem_mesh)
    if not control:
        print('ERROR on creating elements')
    femmesh_obj = analysis.addObject(
        doc.addObject('Fem::FemMeshObject', mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 20
0
def setup_cantileverbase(doc=None, solver="ccxtools"):
    # setup CalculiX cantilever base model

    if doc is None:
        doc = init_doc()

    # part
    box_obj = doc.addObject("Part::Box", "Box")
    box_obj.Height = box_obj.Width = 1000
    box_obj.Length = 8000

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    # TODO How to pass multiple solver for one analysis in one doc
    if solver == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
        )[0]
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False
    elif solver == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools")
        )[0]
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False
        solver_object.WorkingDir = u""
    elif solver == "elmer":
        analysis.addObject(ObjectsFem.makeSolverElmer(doc, "SolverElmer"))
    elif solver == "z88":
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, "SolverZ88"))

    # material
    material_object = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "FemMaterial")
    )[0]
    mat = material_object.Material
    mat["Name"] = "CalculiX-Steel"
    mat["YoungsModulus"] = "210000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    mat["ThermalExpansionCoefficient"] = "0.012 mm/m/K"
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed")
    )[0]
    fixed_constraint.References = [(doc.Box, "Face1")]

    # mesh
    from femexamples.meshes.mesh_canticcx_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name)
    )[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 21
0
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # geometry objects
    # two boxes
    boxlow = doc.addObject("Part::Box", "BoxLower")
    boxupp = doc.addObject("Part::Box", "BoxUpper")
    boxupp.Placement.Base = (0, 0, 10)

    # boolean fragment of the two boxes
    bf = SplitFeatures.makeBooleanFragments(name="BooleanFragments")
    bf.Objects = [boxlow, boxupp]
    bf.Mode = "CompSolid"
    doc.recompute()
    bf.Proxy.execute(bf)
    bf.purgeTouched()
    if FreeCAD.GuiUp:
        for child in bf.ViewObject.Proxy.claimChildren():
            child.ViewObject.hide()
    doc.recompute()

    # extract CompSolid by compound filter tool
    geom_obj = CompoundFilter.makeCompoundFilter(name="MultiMatCompSolid")
    geom_obj.Base = bf
    geom_obj.FilterType = "window-volume"
    geom_obj.Proxy.execute(geom_obj)
    geom_obj.purgeTouched()
    if FreeCAD.GuiUp:
        geom_obj.Base.ViewObject.hide()
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # material
    material_object_low = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterialLow"))[0]
    mat = material_object_low.Material
    mat["Name"] = "Aluminium-Generic"
    mat["YoungsModulus"] = "70000 MPa"
    mat["PoissonRatio"] = "0.35"
    mat["Density"] = "2700  kg/m^3"
    material_object_low.Material = mat
    material_object_low.References = [(boxlow, "Solid1")]
    analysis.addObject(material_object_low)

    material_object_upp = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterialUpp"))[0]
    mat = material_object_upp.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7980 kg/m^3"
    material_object_upp.Material = mat
    material_object_upp.References = [(boxupp, "Solid1")]

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed"))[0]
    fixed_constraint.References = [(geom_obj, "Face5")]

    # pressure_constraint
    pressure_constraint = analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc, "ConstraintPressure"))[0]
    pressure_constraint.References = [(geom_obj, "Face11")]
    pressure_constraint.Pressure = 1000.0
    pressure_constraint.Reversed = False

    # mesh
    from .meshes.mesh_boxes_2_vertikal_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(ObjectsFem.makeMeshGmsh(doc,
                                                             mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 22
0
def setup(doc=None, solvertype="ccxtools"):
    # setup reinfoced wall in 2D

    if doc is None:
        doc = init_doc()

    # part
    from FreeCAD import Vector as vec
    import Part
    from Part import makeLine as ln

    v1 = vec(0, -2000, 0)
    v2 = vec(500, -2000, 0)
    v3 = vec(500, 0, 0)
    v4 = vec(3500, 0, 0)
    v5 = vec(3500, -2000, 0)
    v6 = vec(4000, -2000, 0)
    v7 = vec(4000, 2000, 0)
    v8 = vec(0, 2000, 0)
    l1 = ln(v1, v2)
    l2 = ln(v2, v3)
    l3 = ln(v3, v4)
    l4 = ln(v4, v5)
    l5 = ln(v5, v6)
    l6 = ln(v6, v7)
    l7 = ln(v7, v8)
    l8 = ln(v8, v1)
    rcwall = doc.addObject("Part::Feature", "FIB_Wall")
    rcwall.Shape = Part.Face(Part.Wire([l1, l2, l3, l4, l5, l6, l7, l8]))
    doc.recompute()

    if FreeCAD.GuiUp:
        import FreeCADGui
        FreeCADGui.ActiveDocument.activeView().viewAxonometric()
        FreeCADGui.SendMsgToActiveView("ViewFit")

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver.AnalysisType = "static"
        solver.GeometricalNonlinearity = "linear"
        solver.ThermoMechSteadyState = False
        solver.MatrixSolverType = "default"
        solver.IterationsControlParameterTimeUse = False

    # shell thickness
    thickness = analysis.addObject(
        ObjectsFem.makeElementGeometry2D(doc, 0, "ShellThickness"))[0]
    thickness.Thickness = 150.0

    # material
    matrixprop = {}
    matrixprop["Name"] = "Concrete-EN-C35/45"
    matrixprop["YoungsModulus"] = "32000 MPa"
    matrixprop["PoissonRatio"] = "0.17"
    matrixprop["CompressiveStrength"] = "15.75 MPa"
    # make some hint on the possible angle units in material system
    matrixprop["AngleOfFriction"] = "30 deg"
    matrixprop["Density"] = "2500 kg/m^3"
    reinfoprop = {}
    reinfoprop["Name"] = "Reinforcement-FIB-B500"
    reinfoprop["YieldStrength"] = "315 MPa"
    # not an official FreeCAD material property
    reinfoprop["ReinforcementRatio"] = "0.0"
    material_reinforced = analysis.addObject(
        ObjectsFem.makeMaterialReinforced(doc, "MaterialReinforced"))[0]
    material_reinforced.Material = matrixprop
    material_reinforced.Reinforcement = reinfoprop

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(rcwall, "Edge1"), (rcwall, "Edge5")]

    # force constraint
    force_constraint = doc.Analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce"))[0]
    force_constraint.References = [(rcwall, "Edge7")]
    force_constraint.Force = 1000000.0
    force_constraint.Direction = (rcwall, ["Edge8"])
    force_constraint.Reversed = False

    # displacement_constraint
    displacement_constraint = doc.Analysis.addObject(
        ObjectsFem.makeConstraintDisplacement(
            doc, name="ConstraintDisplacmentPrescribed"))[0]
    displacement_constraint.References = [(rcwall, "Face1")]
    displacement_constraint.zFix = True

    # mesh
    from .meshes.mesh_rc_wall_2d_tria6 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
def setup(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # explanation object
    # just keep the following line and change text string in get_explanation method
    manager.add_explanation_obj(
        doc, get_explanation(manager.get_header(get_information())))

    # geometric object
    geom_obj = doc.addObject("Part::Box", "Box")
    geom_obj.Height = geom_obj.Width = 1000
    geom_obj.Length = 32000
    doc.recompute()
    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    elif solvertype == "elmer":
        solver_obj = ObjectsFem.makeSolverElmer(doc, "SolverElmer")
        eq_obj = ObjectsFem.makeEquationElasticity(doc, solver_obj)
        eq_obj.LinearSolverType = "Direct"
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.SplitInputWriter = False
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
    analysis.addObject(solver_obj)

    # material
    material_obj = ObjectsFem.makeMaterialSolid(doc, "FemMaterial")
    mat = material_obj.Material
    mat["Name"] = "CalculiX-Steel"
    mat["YoungsModulus"] = "210000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    con_fixed.References = [(geom_obj, "Face1")]
    analysis.addObject(con_fixed)

    # constraint selfweight
    con_selfweight = ObjectsFem.makeConstraintSelfWeight(
        doc, "ConstraintSelfWeight")
    con_selfweight.Gravity_z = -1.00
    analysis.addObject(con_selfweight)

    # mesh
    from .meshes.mesh_selfweight_cantilever_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        ObjectsFem.makeMeshGmsh(doc, get_meshname()))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 24
0
def setup(doc=None, solvertype="ccxtools"):
    """ Nonlinear material example, plate with hole.

    https://forum.freecadweb.org/viewtopic.php?f=24&t=31997&start=30
    https://forum.freecadweb.org/viewtopic.php?t=33974&start=90
    https://forum.freecadweb.org/viewtopic.php?t=35893

    plate: 400x200x10 mm
    hole: diameter 100 mm (half cross section)
    load: 130 MPa tension
    linear material: Steel, E = 210000 MPa, my = 0.3
    nonlinear material: '240.0, 0.0' to '270.0, 0.025'
    TODO nonlinear material: give more information, use values from harry
    TODO compare results with example from HarryvL

    """

    if doc is None:
        doc = init_doc()

    # part
    import Part
    from FreeCAD import Vector as vec
    from Part import makeLine as ln
    from Part import makeCircle as ci

    v1 = vec(-200, -100, 0)
    v2 = vec(200, -100, 0)
    v3 = vec(200, 100, 0)
    v4 = vec(-200, 100, 0)
    l1 = ln(v1, v2)
    l2 = ln(v2, v3)
    l3 = ln(v3, v4)
    l4 = ln(v4, v1)
    v5 = vec(0, 0, 0)
    c1 = ci(50, v5)
    face = Part.makeFace([Part.Wire([l1, l2, l3, l4]), c1],
                         "Part::FaceMakerBullseye")
    partfem = doc.addObject("Part::Feature", "Hole_Plate")
    partfem.Shape = face.extrude(vec(0, 0, 10))
    doc.recompute()

    if FreeCAD.GuiUp:
        import FreeCADGui
        FreeCADGui.ActiveDocument.activeView().viewAxonometric()
        FreeCADGui.SendMsgToActiveView("ViewFit")

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver.SplitInputWriter = False
        solver.AnalysisType = "static"
        solver.GeometricalNonlinearity = "linear"
        solver.ThermoMechSteadyState = False
        solver.MatrixSolverType = "default"
        solver.IterationsControlParameterTimeUse = False
        solver.GeometricalNonlinearity = 'nonlinear'
        solver.MaterialNonlinearity = 'nonlinear'

    # linear material
    matprop = {}
    matprop["Name"] = "CalculiX-Steel"
    matprop["YoungsModulus"] = "210000 MPa"
    matprop["PoissonRatio"] = "0.30"
    matprop["Density"] = "7900 kg/m^3"
    material = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "Material_lin"))[0]
    material.Material = matprop

    # nonlinear material
    nonlinear_material = analysis.addObject(
        ObjectsFem.makeMaterialMechanicalNonlinear(doc, material,
                                                   "Material_nonlin"))[0]
    nonlinear_material.YieldPoint1 = '240.0, 0.0'
    nonlinear_material.YieldPoint2 = '270.0, 0.025'
    # check solver attributes, Nonlinearity needs to be set to nonlinear

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed"))[0]
    fixed_constraint.References = [(partfem, "Face4")]

    # force constraint
    pressure_constraint = doc.Analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc, "ConstraintPressure"))[0]
    pressure_constraint.References = [(partfem, "Face2")]
    pressure_constraint.Pressure = 130.0
    pressure_constraint.Reversed = True

    # mesh
    from .meshes.mesh_platewithhole_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 25
0
def setup_cantileverbase(doc=None, solver='ccxtools'):
    # setup CalculiX cantilever base model

    if doc is None:
        doc = init_doc()

    # part
    box_obj = doc.addObject('Part::Box', 'Box')
    box_obj.Height = box_obj.Width = 1000
    box_obj.Length = 8000

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, 'Analysis')

    solver
    # TODO How to pass multiple solver for one analysis in one doc
    if solver is None:
        pass  # no solver is added
    elif solver is 'calculix':
        solver_object = analysis.addObject(ObjectsFem.makeSolverCalculix(doc, 'SolverCalculiX'))[0]
        solver_object.AnalysisType = 'static'
        solver_object.GeometricalNonlinearity = 'linear'
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = 'default'
        solver_object.IterationsControlParameterTimeUse = False
    elif solver is 'ccxtools':
        solver_object = analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc, 'CalculiXccxTools'))[0]
        solver_object.AnalysisType = 'static'
        solver_object.GeometricalNonlinearity = 'linear'
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = 'default'
        solver_object.IterationsControlParameterTimeUse = False
        solver_object.WorkingDir = u''
    elif solver is 'elmer':
        analysis.addObject(ObjectsFem.makeSolverElmer(doc, 'SolverElmer'))
    elif solver is 'z88':
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, 'SolverZ88'))

    # material
    material_object = analysis.addObject(ObjectsFem.makeMaterialSolid(doc, 'FemMaterial'))[0]
    mat = material_object.Material
    mat['Name'] = "CalculiX-Steel"
    mat['YoungsModulus'] = "210000 MPa"
    mat['PoissonRatio'] = "0.30"
    mat['Density'] = "7900 kg/m^3"
    mat['ThermalExpansionCoefficient'] = "0.012 mm/m/K"
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(doc.Box, "Face1")]

    # mesh
    from femexamples.meshes.mesh_canticcx_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        print('ERROR on creating nodes')
    control = create_elements(fem_mesh)
    if not control:
        print('ERROR on creating elements')
    femmesh_obj = analysis.addObject(doc.addObject('Fem::FemMeshObject', mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 26
0
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # geom objects
    # bottom box
    bottom_box_obj = doc.addObject("Part::Box", "BottomBox")
    bottom_box_obj.Length = 100
    bottom_box_obj.Width = 5
    bottom_box_obj.Height = 1

    # top box
    top_box_obj = doc.addObject("Part::Box", "TopBox")
    top_box_obj.Length = 100
    top_box_obj.Width = 5
    top_box_obj.Height = 1
    top_box_obj.Placement = FreeCAD.Placement(
        Vector(0, 0, 1),
        Rotation(0, 0, 0),
        Vector(0, 0, 0),
    )
    doc.recompute()

    # all geom boolean fragment
    geom_obj = SplitFeatures.makeBooleanFragments(name='BooleanFragments')
    geom_obj.Objects = [bottom_box_obj, top_box_obj]
    if FreeCAD.GuiUp:
        bottom_box_obj.ViewObject.hide()
        top_box_obj.ViewObject.hide()
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    elif solvertype == "elmer":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverElmer(doc, "SolverElmer"))[0]
        solver_object.SteadyStateMinIterations = 1
        solver_object.SteadyStateMaxIterations = 10
        eq_heat = ObjectsFem.makeEquationHeat(doc, solver_object)
        eq_heat.Bubbles = True
        eq_heat.Priority = 2
        eq_elasticity = ObjectsFem.makeEquationElasticity(doc, solver_object)
        eq_elasticity.Bubbles = True
        eq_elasticity.Priority = 1
        eq_elasticity.LinearSolverType = "Direct"
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.AnalysisType = "thermomech"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = True
        # solver_object.MatrixSolverType = "default"
        solver_object.MatrixSolverType = "spooles"  # thomas
        solver_object.SplitInputWriter = False
        solver_object.IterationsThermoMechMaximum = 2000
        # solver_object.IterationsControlParameterTimeUse = True  # thermomech spine

    # material
    material_obj_bottom = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MaterialCopper"))[0]
    mat = material_obj_bottom.Material
    mat["Name"] = "Copper"
    mat["YoungsModulus"] = "130000 MPa"
    mat["PoissonRatio"] = "0.354"
    mat["SpecificHeat"] = "385 J/kg/K"
    mat["ThermalConductivity"] = "200 W/m/K"
    mat["ThermalExpansionCoefficient"] = "0.00002 m/m/K"
    mat["Density"] = "1.00 kg/m^3"
    material_obj_bottom.Material = mat
    material_obj_bottom.References = [(geom_obj, "Solid1")]
    analysis.addObject(material_obj_bottom)

    material_obj_top = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MaterialInvar"))[0]
    mat = material_obj_top.Material
    mat["Name"] = "Invar"
    mat["YoungsModulus"] = "137000 MPa"
    mat["PoissonRatio"] = "0.28"
    mat["SpecificHeat"] = "510 J/kg/K"
    mat["ThermalConductivity"] = "13 W/m/K"
    mat["ThermalExpansionCoefficient"] = "0.0000012 m/m/K"
    mat["Density"] = "1.00 kg/m^3"
    material_obj_top.Material = mat
    material_obj_top.References = [(geom_obj, "Solid2")]
    analysis.addObject(material_obj_top)

    # constraint fixed
    con_fixed = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed"))[0]
    con_fixed.References = [
        (geom_obj, "Face1"),
        (geom_obj, "Face7"),
    ]

    # constraint initial temperature
    constraint_initialtemp = analysis.addObject(
        ObjectsFem.makeConstraintInitialTemperature(
            doc, "ConstraintInitialTemperature"))[0]
    constraint_initialtemp.initialTemperature = 273.0

    # constraint temperature
    constraint_temperature = analysis.addObject(
        ObjectsFem.makeConstraintTemperature(doc, "ConstraintTemperature"))[0]
    constraint_temperature.References = [
        (geom_obj, "Face1"),
        (geom_obj, "Face2"),
        (geom_obj, "Face3"),
        (geom_obj, "Face4"),
        (geom_obj, "Face5"),
        (geom_obj, "Face7"),
        (geom_obj, "Face8"),
        (geom_obj, "Face9"),
        (geom_obj, "Face10"),
        (geom_obj, "Face11"),
    ]
    constraint_temperature.Temperature = 373.0
    constraint_temperature.CFlux = 0.0

    # mesh
    from .meshes.mesh_thermomech_bimetall_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(ObjectsFem.makeMeshGmsh(doc,
                                                             mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 27
0
def setup_cantilever_base_edge(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # geometric objects
    # load line
    load_line = doc.addObject("Part::Line", "LoadLine")
    load_line.X1 = 0
    load_line.Y1 = 0
    load_line.Z1 = 1000
    load_line.X2 = 0
    load_line.Y2 = 0
    load_line.Z2 = 0

    # cantilever line
    geom_obj = doc.addObject("Part::Line", "CantileverLine")
    geom_obj.X1 = 0
    geom_obj.Y1 = 500
    geom_obj.Z1 = 500
    geom_obj.X2 = 8000
    geom_obj.Y2 = 500
    geom_obj.Z2 = 500

    doc.recompute()

    if FreeCAD.GuiUp:
        load_line.ViewObject.Visibility = False
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    elif solvertype == "mystran":
        solver_obj = ObjectsFem.makeSolverMystran(doc, "SolverMystran")
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
        solver_obj.SplitInputWriter = False
    analysis.addObject(solver_obj)

    # beam section
    beamsection_obj = ObjectsFem.makeElementGeometry1D(
        doc,
        sectiontype="Rectangular",
        width=1000.0,
        height=1000.0,
        name="BeamCrossSection")
    analysis.addObject(beamsection_obj)

    # material
    material_obj = ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterial")
    mat = material_obj.Material
    mat["Name"] = "Calculix-Steel"
    mat["YoungsModulus"] = "210000 MPa"
    mat["PoissonRatio"] = "0.30"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    con_fixed.References = [(geom_obj, "Vertex1")]
    analysis.addObject(con_fixed)

    # constraint force
    con_force = ObjectsFem.makeConstraintForce(doc, "ConstraintForce")
    con_force.References = [(geom_obj, "Vertex2")]
    con_force.Force = 9000000.0  # 9'000'000 N = 9 MN
    con_force.Direction = (load_line, ["Edge1"])
    con_force.Reversed = False
    analysis.addObject(con_force)

    # mesh
    from .meshes.mesh_canticcx_seg3 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        ObjectsFem.makeMeshGmsh(doc, get_meshname()))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False
    femmesh_obj.ElementDimension = "1D"
    femmesh_obj.CharacteristicLengthMax = "1750.0 mm"
    femmesh_obj.CharacteristicLengthMin = "1750.0 mm"

    doc.recompute()
    return doc
Ejemplo n.º 28
0
    def test_femobjects_derivedfromfem(self):
        # try to add all possible True types from inheritance chain see
        # https://forum.freecadweb.org/viewtopic.php?f=10&t=32625
        doc = self.active_doc

        from femtools.femutils import is_derived_from

        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        mesh = ObjectsFem.makeMeshGmsh(doc)
        solverelmer = ObjectsFem.makeSolverElmer(doc)

        # FemAnalysis
        self.assertTrue(
            is_derived_from(ObjectsFem.makeAnalysis(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeAnalysis(doc), 'Fem::FemAnalysis'))

        # ConstraintBearing
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBearing(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBearing(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBearing(doc),
                            'Fem::ConstraintBearing'))

        # ConstraintBodyHeatSource
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc),
                            'Fem::ConstraintPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc),
                            'Fem::ConstraintBodyHeatSource'))

        # ConstraintContact
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintContact(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintContact(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintContact(doc),
                            'Fem::ConstraintContact'))

        # ConstraintDisplacement
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintDisplacement(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintDisplacement(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintDisplacement(doc),
                            'Fem::ConstraintDisplacement'))

        # ConstraintElectrostaticPotential
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeConstraintElectrostaticPotential(doc),
                'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeConstraintElectrostaticPotential(doc),
                'Fem::ConstraintPython'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeConstraintElectrostaticPotential(doc),
                'Fem::ConstraintElectrostaticPotential'))

        # ConstraintFixed
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFixed(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFixed(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFixed(doc),
                            'Fem::ConstraintFixed'))

        # ConstraintFlowVelocity
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc),
                            'Fem::ConstraintPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc),
                            'Fem::ConstraintFlowVelocity'))

        # ConstraintFluidBoundary
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc),
                            'Fem::ConstraintFluidBoundary'))

        # ConstraintForce
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintForce(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintForce(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintForce(doc),
                            'Fem::ConstraintForce'))

        # ConstraintGear
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintGear(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintGear(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintGear(doc),
                            'Fem::ConstraintGear'))

        # ConstraintHeatflux
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintHeatflux(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintHeatflux(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintHeatflux(doc),
                            'Fem::ConstraintHeatflux'))

        # ConstraintInitialFlowVelocity
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc),
                            'Fem::ConstraintPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc),
                            'Fem::ConstraintInitialFlowVelocity'))

        # ConstraintInitialTemperature
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc),
                            'Fem::ConstraintInitialTemperature'))

        # ConstraintPlaneRotation
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc),
                            'Fem::ConstraintPlaneRotation'))

        # ConstraintPressure
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPressure(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPressure(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPressure(doc),
                            'Fem::ConstraintPressure'))

        # ConstraintPulley
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPulley(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPulley(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintPulley(doc),
                            'Fem::ConstraintPulley'))

        # ConstraintSelfWeight
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc),
                            'Fem::ConstraintPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc),
                            'Fem::ConstraintSelfWeight'))

        # ConstraintTemperature
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintTemperature(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintTemperature(doc),
                            'Fem::Constraint'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintTemperature(doc),
                            'Fem::ConstraintTemperature'))

        # ConstraintTransform
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintTransform(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeConstraintTransform(doc),
                            'Fem::ConstraintTransform'))

        # FemElementFluid1D
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementFluid1D(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementFluid1D(doc),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementFluid1D(doc),
                            'Fem::FemElementFluid1D'))

        # FemElementGeometry1D
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry1D(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry1D(doc),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry1D(doc),
                            'Fem::FemElementGeometry1D'))

        # FemElementGeometry2D
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry2D(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry2D(doc),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementGeometry2D(doc),
                            'Fem::FemElementGeometry2D'))

        # FemElementRotation1D
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementRotation1D(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementRotation1D(doc),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeElementRotation1D(doc),
                            'Fem::FemElementRotation1D'))

        # Material
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialFluid(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialFluid(doc),
                            'App::MaterialObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialFluid(doc),
                            'Fem::Material'))

        # Material
        self.assertTrue(is_derived_from(materialsolid, 'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(materialsolid, 'App::MaterialObjectPython'))
        self.assertTrue(is_derived_from(materialsolid, 'Fem::Material'))

        # MaterialMechanicalNonlinear
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid),
                'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid),
                'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid),
                'Fem::MaterialMechanicalNonlinear'))

        # MaterialReinforced
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialReinforced(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialReinforced(doc),
                            'App::MaterialObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMaterialReinforced(doc),
                            'Fem::MaterialReinforced'))

        # FemMeshGmsh
        self.assertTrue(is_derived_from(mesh, 'App::DocumentObject'))
        self.assertTrue(is_derived_from(mesh, 'Fem::FemMeshObjectPython'))
        self.assertTrue(is_derived_from(mesh, 'Fem::FemMeshGmsh'))

        # FemMeshBoundaryLayer
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh),
                            'Fem::FemMeshBoundaryLayer'))

        # FemMeshGroup
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh),
                            'Fem::FemMeshGroup'))

        # FemMeshRegion
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh),
                            'Fem::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh),
                            'Fem::FemMeshRegion'))

        # FemMeshShapeNetgenObject
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshNetgen(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshNetgen(doc),
                            'Fem::FemMeshShapeNetgenObject'))

        # FemMeshResult
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshResult(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshResult(doc),
                            'Fem::FemMeshObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeMeshResult(doc),
                            'Fem::FemMeshResult'))

        # FemResultMechanical
        self.assertTrue(
            is_derived_from(ObjectsFem.makeResultMechanical(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeResultMechanical(doc),
                            'Fem::FemResultObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeResultMechanical(doc),
                            'Fem::FemResultMechanical'))

        # FemSolverCalculixCcxTools
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc),
                            'Fem::FemSolverObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc),
                            'Fem::FemSolverObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc),
                            'Fem::FemSolverCalculixCcxTools'))

        # FemSolverObjectCalculix
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculix(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculix(doc),
                            'Fem::FemSolverObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculix(doc),
                            'Fem::FemSolverObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverCalculix(doc),
                            'Fem::FemSolverObjectCalculix'))

        # FemSolverObjectElmer
        self.assertTrue(is_derived_from(solverelmer, 'App::DocumentObject'))
        self.assertTrue(is_derived_from(solverelmer, 'Fem::FemSolverObject'))
        self.assertTrue(
            is_derived_from(solverelmer, 'Fem::FemSolverObjectPython'))
        self.assertTrue(
            is_derived_from(solverelmer, 'Fem::FemSolverObjectElmer'))

        # FemSolverObjectZ88
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverZ88(doc),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverZ88(doc),
                            'Fem::FemSolverObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverZ88(doc),
                            'Fem::FemSolverObjectPython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeSolverZ88(doc),
                            'Fem::FemSolverObjectZ88'))

        # FemEquationElmerElasticity
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElasticity(doc, solverelmer),
                'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElasticity(doc, solverelmer),
                'App::FeaturePython'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElasticity(doc, solverelmer),
                'Fem::FemEquationElmerElasticity'))

        # FemEquationElmerElectrostatic
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElectrostatic(doc, solverelmer),
                'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElectrostatic(doc, solverelmer),
                'App::FeaturePython'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationElectrostatic(doc, solverelmer),
                'Fem::FemEquationElmerElectrostatic'))

        # FemEquationElmerFlow
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer),
                            'App::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer),
                            'Fem::FemEquationElmerFlow'))

        # FemEquationElmerFluxsolver
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationFluxsolver(doc, solverelmer),
                'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationFluxsolver(doc, solverelmer),
                'App::FeaturePython'))
        self.assertTrue(
            is_derived_from(
                ObjectsFem.makeEquationFluxsolver(doc, solverelmer),
                'Fem::FemEquationElmerFluxsolver'))

        # FemEquationElmerHeat
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer),
                            'App::DocumentObject'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer),
                            'App::FeaturePython'))
        self.assertTrue(
            is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer),
                            'Fem::FemEquationElmerHeat'))
Ejemplo n.º 29
0
def setup(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # explanation object
    # just keep the following line and change text string in get_explanation method
    manager.add_explanation_obj(
        doc, get_explanation(manager.get_header(get_information())))

    # setup box static, add a fixed, force and a pressure constraint
    doc = setup_boxanalysisbase(doc, solvertype)
    geom_obj = doc.Box
    analysis = doc.Analysis

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    elif solvertype == "elmer":
        solver_obj = ObjectsFem.makeSolverElmer(doc, "SolverElmer")
        ObjectsFem.makeEquationElasticity(doc, solver_obj)
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.SplitInputWriter = False
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
    analysis.addObject(solver_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "FemConstraintFixed")
    con_fixed.References = [(geom_obj, "Face1")]
    analysis.addObject(con_fixed)

    # constraint force
    con_force = ObjectsFem.makeConstraintForce(doc, "FemConstraintForce")
    con_force.References = [(geom_obj, "Face6")]
    con_force.Force = 40000.0
    con_force.Direction = (geom_obj, ["Edge5"])
    con_force.Reversed = True
    analysis.addObject(con_force)

    # constraint pressure
    con_pressure = ObjectsFem.makeConstraintPressure(
        doc, name="FemConstraintPressure")
    con_pressure.References = [(geom_obj, "Face2")]
    con_pressure.Pressure = 1000.0
    con_pressure.Reversed = False
    analysis.addObject(con_pressure)

    doc.recompute()
    return doc
Ejemplo n.º 30
0
def setup_cantileverbase(doc=None, solvertype="ccxtools"):
    # setup CalculiX cantilever base model

    if doc is None:
        doc = init_doc()

    # geometry object
    # name is important because the other method in this module use obj name
    geom_obj = doc.addObject("Part::Box", "Box")
    geom_obj.Height = geom_obj.Width = 1000
    geom_obj.Length = 8000
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    elif solvertype == "elmer":
        analysis.addObject(ObjectsFem.makeSolverElmer(doc, "SolverElmer"))
    elif solvertype == "z88":
        analysis.addObject(ObjectsFem.makeSolverZ88(doc, "SolverZ88"))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # material
    material_object = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "FemMaterial"))[0]
    mat = material_object.Material
    mat["Name"] = "CalculiX-Steel"
    mat["YoungsModulus"] = "210000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    mat["ThermalExpansionCoefficient"] = "0.012 mm/m/K"
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(geom_obj, "Face1")]

    # mesh
    from .meshes.mesh_canticcx_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 31
0
def setup(doc=None, solvertype="ccxtools"):

    if doc is None:
        doc = init_doc()

    # geometry object
    # name is important because the other method in this module use obj name
    l1 = Part.makeLine((-142.5, -142.5, 0), (142.5, -142.5, 0))
    l2 = Part.makeLine((142.5, -142.5, 0), (142.5, 142.5, 0))
    l3 = Part.makeLine((142.5, 142.5, 0), (-142.5, 142.5, 0))
    l4 = Part.makeLine((-142.5, 142.5, 0), (-142.5, -142.5, 0))
    wire = Part.Wire([l1, l2, l3, l4])
    shape = wire.extrude(Vector(0, 0, 1000))
    geom_obj = doc.addObject('Part::Feature', 'SquareTube')
    geom_obj.Shape = shape

    points_forces = []
    points_forces.append(Part.Vertex(-142.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 95.0, 0.0))
    points_forces.append(Part.Vertex(-142.5, 47.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 0.0, 0.0))
    points_forces.append(Part.Vertex(-142.5, -47.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, -95.0, 0.0))
    points_forces.append(Part.Vertex(142.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(-95.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(-47.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(0.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(47.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(95.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, -95.0, 0.0))
    points_forces.append(Part.Vertex(142.5, -47.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 0.0, 0.0))
    points_forces.append(Part.Vertex(142.5, 47.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 95.0, 0.0))
    points_forces.append(Part.Vertex(95.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(47.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(0.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(-47.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(-95.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 118.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -118.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, 71.25, 0.0))
    points_forces.append(Part.Vertex(-142.5, 23.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -23.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -71.25, 0.0))
    points_forces.append(Part.Vertex(118.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(-71.25, -142.5, 0.0))
    points_forces.append(Part.Vertex(-118.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(-23.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(23.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(71.25, -142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 118.75, 0.0))
    points_forces.append(Part.Vertex(142.5, -71.25, 0.0))
    points_forces.append(Part.Vertex(142.5, -118.75, 0.0))
    points_forces.append(Part.Vertex(142.5, -23.75, 0.0))
    points_forces.append(Part.Vertex(142.5, 23.75, 0.0))
    points_forces.append(Part.Vertex(142.5, 71.25, 0.0))
    points_forces.append(Part.Vertex(71.25, 142.5, 0.0))
    points_forces.append(Part.Vertex(118.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(23.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(-23.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(-71.25, 142.5, 0.0))
    points_forces.append(Part.Vertex(-118.75, 142.5, 0.0))

    points_fixes = []
    points_fixes.append(Part.Vertex(-142.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 95.0, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 47.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 0.0, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -47.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -95.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-95.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-47.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(0.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(47.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(95.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -95.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -47.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 0.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 47.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 95.0, 1000.0))
    points_fixes.append(Part.Vertex(95.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(47.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(0.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-47.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-95.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 118.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -118.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 71.25, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 23.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -23.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -71.25, 1000.0))
    points_fixes.append(Part.Vertex(118.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-71.25, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-118.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-23.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(23.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(71.25, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 118.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -71.25, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -118.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -23.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 23.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 71.25, 1000.0))
    points_fixes.append(Part.Vertex(71.25, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(118.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(23.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-23.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-71.25, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-118.75, 142.5, 1000.0))

    forces_obj = doc.addObject('Part::Feature', 'Forces')
    forces_obj.Shape = Part.makeCompound(points_forces)
    fixes_obj = doc.addObject('Part::Feature', 'Fixes')
    fixes_obj.Shape = Part.makeCompound(points_fixes)

    doc.recompute()

    if FreeCAD.GuiUp:
        forces_obj.ViewObject.PointColor = (1.0, 0.0, 0.0, 0.0)
        forces_obj.ViewObject.PointSize = 10.0
        fixes_obj.ViewObject.PointColor = (1.0, 0.0, 0.0, 0.0)
        fixes_obj.ViewObject.PointSize = 10.0
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # shell thickness
    thickness = analysis.addObject(
        ObjectsFem.makeElementGeometry2D(doc, 0, "ShellThickness"))[0]
    thickness.Thickness = 15.0

    # material
    material_object = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "FemMaterial"))[0]
    mat = material_object.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, name="ConstraintFixed"))[0]
    fixed_constraint.References = [(doc.Fixes, 'Vertex6'),
                                   (doc.Fixes, 'Vertex15'),
                                   (doc.Fixes, 'Vertex5'),
                                   (doc.Fixes, 'Vertex29'),
                                   (doc.Fixes, 'Vertex42'),
                                   (doc.Fixes, 'Vertex30'),
                                   (doc.Fixes, 'Vertex9'),
                                   (doc.Fixes, 'Vertex31'),
                                   (doc.Fixes, 'Vertex33'),
                                   (doc.Fixes, 'Vertex32'),
                                   (doc.Fixes, 'Vertex3'),
                                   (doc.Fixes, 'Vertex34'),
                                   (doc.Fixes, 'Vertex46'),
                                   (doc.Fixes, 'Vertex1'),
                                   (doc.Fixes, 'Vertex36'),
                                   (doc.Fixes, 'Vertex11'),
                                   (doc.Fixes, 'Vertex38'),
                                   (doc.Fixes, 'Vertex12'),
                                   (doc.Fixes, 'Vertex39'),
                                   (doc.Fixes, 'Vertex13'),
                                   (doc.Fixes, 'Vertex40'),
                                   (doc.Fixes, 'Vertex16'),
                                   (doc.Fixes, 'Vertex35'),
                                   (doc.Fixes, 'Vertex14'),
                                   (doc.Fixes, 'Vertex47'),
                                   (doc.Fixes, 'Vertex20'),
                                   (doc.Fixes, 'Vertex37'),
                                   (doc.Fixes, 'Vertex18'),
                                   (doc.Fixes, 'Vertex41'),
                                   (doc.Fixes, 'Vertex17'),
                                   (doc.Fixes, 'Vertex10'),
                                   (doc.Fixes, 'Vertex26'),
                                   (doc.Fixes, 'Vertex43'),
                                   (doc.Fixes, 'Vertex21'),
                                   (doc.Fixes, 'Vertex44'),
                                   (doc.Fixes, 'Vertex19'),
                                   (doc.Fixes, 'Vertex4'),
                                   (doc.Fixes, 'Vertex28'),
                                   (doc.Fixes, 'Vertex48'),
                                   (doc.Fixes, 'Vertex22'),
                                   (doc.Fixes, 'Vertex8'),
                                   (doc.Fixes, 'Vertex23'),
                                   (doc.Fixes, 'Vertex7'),
                                   (doc.Fixes, 'Vertex24'),
                                   (doc.Fixes, 'Vertex45'),
                                   (doc.Fixes, 'Vertex27'),
                                   (doc.Fixes, 'Vertex2'),
                                   (doc.Fixes, 'Vertex25')]

    # force_constraint1
    force_constraint1 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce1"))[0]
    force_constraint1.References = [(forces_obj, 'Vertex1'),
                                    (forces_obj, 'Vertex14')]
    force_constraint1.Force = 5555.56
    force_constraint1.Direction = (doc.SquareTube, ["Edge9"])
    force_constraint1.Reversed = False

    # force_constraint2
    force_constraint2 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce2"))[0]
    force_constraint2.References = [(forces_obj, 'Vertex2'),
                                    (forces_obj, 'Vertex8')]
    force_constraint2.Force = 5555.56
    force_constraint2.Direction = (doc.SquareTube, ["Edge3"])
    force_constraint2.Reversed = False

    # force_constraint3
    force_constraint3 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce3"))[0]
    force_constraint3.References = [
        (forces_obj, 'Vertex20'),
        (forces_obj, 'Vertex21'),
        (forces_obj, 'Vertex22'),
        (forces_obj, 'Vertex23'),
        (forces_obj, 'Vertex24'),
    ]
    force_constraint3.Force = 27777.78
    force_constraint3.Direction = (doc.SquareTube, ["Edge9"])
    force_constraint3.Reversed = False

    # force_constraint4
    force_constraint4 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce4"))[0]
    force_constraint4.References = [
        (forces_obj, 'Vertex9'),
        (forces_obj, 'Vertex10'),
        (forces_obj, 'Vertex11'),
        (forces_obj, 'Vertex12'),
        (forces_obj, 'Vertex13'),
    ]
    force_constraint4.Force = 27777.78
    force_constraint4.Direction = (doc.SquareTube, ["Edge3"])
    force_constraint4.Reversed = False

    # force_constraint5
    force_constraint5 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce5"))[0]
    force_constraint5.References = [
        (forces_obj, 'Vertex43'),
        (forces_obj, 'Vertex44'),
        (forces_obj, 'Vertex45'),
        (forces_obj, 'Vertex46'),
        (forces_obj, 'Vertex47'),
        (forces_obj, 'Vertex48'),
    ]
    force_constraint5.Force = 66666.67
    force_constraint5.Direction = (doc.SquareTube, ["Edge9"])
    force_constraint5.Reversed = False

    # force_constraint6
    force_constraint6 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce6"))[0]
    force_constraint6.References = [
        (forces_obj, 'Vertex31'),
        (forces_obj, 'Vertex32'),
        (forces_obj, 'Vertex33'),
        (forces_obj, 'Vertex34'),
        (forces_obj, 'Vertex35'),
        (forces_obj, 'Vertex36'),
    ]
    force_constraint6.Force = 66666.67
    force_constraint6.Direction = (doc.SquareTube, ["Edge3"])
    force_constraint6.Reversed = False

    # force_constraint7
    force_constraint7 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce7"))[0]
    force_constraint7.References = [(forces_obj, 'Vertex1'),
                                    (forces_obj, 'Vertex2')]
    force_constraint7.Force = 5555.56
    force_constraint7.Direction = (doc.SquareTube, ["Edge11"])
    force_constraint7.Reversed = False

    # force_constraint8
    force_constraint8 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce8"))[0]
    force_constraint8.References = [(forces_obj, 'Vertex8'),
                                    (forces_obj, 'Vertex14')]
    force_constraint8.Force = 5555.56
    force_constraint8.Direction = (doc.SquareTube, ["Edge6"])
    force_constraint8.Reversed = False

    # force_constraint9
    force_constraint9 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce9"))[0]
    force_constraint9.References = [
        (forces_obj, 'Vertex3'),
        (forces_obj, 'Vertex4'),
        (forces_obj, 'Vertex5'),
        (forces_obj, 'Vertex6'),
        (forces_obj, 'Vertex7'),
    ]
    force_constraint9.Force = 27777.78
    force_constraint9.Direction = (doc.SquareTube, ["Edge11"])
    force_constraint9.Reversed = False

    # force_constraint10
    force_constraint10 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce10"))[0]
    force_constraint10.References = [
        (forces_obj, 'Vertex15'),
        (forces_obj, 'Vertex16'),
        (forces_obj, 'Vertex17'),
        (forces_obj, 'Vertex18'),
        (forces_obj, 'Vertex19'),
    ]
    force_constraint10.Force = 27777.78
    force_constraint10.Direction = (doc.SquareTube, ["Edge6"])
    force_constraint10.Reversed = False

    # force_constraint11
    force_constraint11 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce11"))[0]
    force_constraint11.References = [
        (forces_obj, 'Vertex25'),
        (forces_obj, 'Vertex26'),
        (forces_obj, 'Vertex27'),
        (forces_obj, 'Vertex28'),
        (forces_obj, 'Vertex29'),
        (forces_obj, 'Vertex30'),
    ]
    force_constraint11.Force = 66666.67
    force_constraint11.Direction = (doc.SquareTube, ["Edge11"])
    force_constraint11.Reversed = False

    # force_constraint12
    force_constraint12 = analysis.addObject(
        ObjectsFem.makeConstraintForce(doc, name="ConstraintForce12"))[0]
    force_constraint12.References = [
        (forces_obj, 'Vertex37'),
        (forces_obj, 'Vertex38'),
        (forces_obj, 'Vertex39'),
        (forces_obj, 'Vertex40'),
        (forces_obj, 'Vertex41'),
        (forces_obj, 'Vertex42'),
    ]
    force_constraint12.Force = 66666.67
    force_constraint12.Direction = (doc.SquareTube, ["Edge6"])
    force_constraint12.Reversed = False

    # mesh
    from .meshes.mesh_square_pipe_end_twisted_tria6 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(ObjectsFem.makeMeshGmsh(doc,
                                                             mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 32
0
    def test_femobjects_make(self):
        doc = self.active_doc
        analysis = ObjectsFem.makeAnalysis(doc)

        analysis.addObject(ObjectsFem.makeConstraintBearing(doc))
        analysis.addObject(ObjectsFem.makeConstraintBodyHeatSource(doc))
        analysis.addObject(ObjectsFem.makeConstraintContact(doc))
        analysis.addObject(ObjectsFem.makeConstraintDisplacement(doc))
        analysis.addObject(
            ObjectsFem.makeConstraintElectrostaticPotential(doc))
        analysis.addObject(ObjectsFem.makeConstraintFixed(doc))
        analysis.addObject(ObjectsFem.makeConstraintFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintFluidBoundary(doc))
        analysis.addObject(ObjectsFem.makeConstraintForce(doc))
        analysis.addObject(ObjectsFem.makeConstraintGear(doc))
        analysis.addObject(ObjectsFem.makeConstraintHeatflux(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialFlowVelocity(doc))
        analysis.addObject(ObjectsFem.makeConstraintInitialTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintPlaneRotation(doc))
        analysis.addObject(ObjectsFem.makeConstraintPressure(doc))
        analysis.addObject(ObjectsFem.makeConstraintPulley(doc))
        analysis.addObject(ObjectsFem.makeConstraintSelfWeight(doc))
        analysis.addObject(ObjectsFem.makeConstraintTemperature(doc))
        analysis.addObject(ObjectsFem.makeConstraintTransform(doc))

        analysis.addObject(ObjectsFem.makeElementFluid1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry1D(doc))
        analysis.addObject(ObjectsFem.makeElementGeometry2D(doc))
        analysis.addObject(ObjectsFem.makeElementRotation1D(doc))

        analysis.addObject(ObjectsFem.makeMaterialFluid(doc))
        mat = analysis.addObject(ObjectsFem.makeMaterialSolid(doc))[0]
        analysis.addObject(ObjectsFem.makeMaterialMechanicalNonlinear(
            doc, mat))
        analysis.addObject(ObjectsFem.makeMaterialReinforced(doc))

        msh = analysis.addObject(ObjectsFem.makeMeshGmsh(doc))[0]
        analysis.addObject(ObjectsFem.makeMeshBoundaryLayer(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshGroup(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshRegion(doc, msh))
        analysis.addObject(ObjectsFem.makeMeshNetgen(doc))
        analysis.addObject(ObjectsFem.makeMeshResult(doc))

        res = analysis.addObject(ObjectsFem.makeResultMechanical(doc))[0]
        if "BUILD_FEM_VTK" in FreeCAD.__cmake__:
            vres = analysis.addObject(ObjectsFem.makePostVtkResult(doc,
                                                                   res))[0]
            analysis.addObject(
                ObjectsFem.makePostVtkFilterClipRegion(doc, vres))
            analysis.addObject(
                ObjectsFem.makePostVtkFilterClipScalar(doc, vres))
            analysis.addObject(
                ObjectsFem.makePostVtkFilterCutFunction(doc, vres))
            analysis.addObject(ObjectsFem.makePostVtkFilterWarp(doc, vres))

        analysis.addObject(ObjectsFem.makeSolverCalculixCcxTools(doc))
        analysis.addObject(ObjectsFem.makeSolverCalculix(doc))
        sol = analysis.addObject(ObjectsFem.makeSolverElmer(doc))[0]
        analysis.addObject(ObjectsFem.makeSolverZ88(doc))

        analysis.addObject(ObjectsFem.makeEquationElasticity(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationElectrostatic(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFlow(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationFluxsolver(doc, sol))
        analysis.addObject(ObjectsFem.makeEquationHeat(doc, sol))
        # is = 48 (just copy in empty file to test, or run unit test case, it is printed)
        # TODO if the equations and gmsh mesh childs are added to the analysis,
        # they show up twice on Tree (on solver resp. gemsh mesh obj and on analysis)
        # https://forum.freecadweb.org/viewtopic.php?t=25283

        doc.recompute()

        # if FEM VTK post processing is disabled, we are not able to create VTK post objects
        if "BUILD_FEM_VTK" in FreeCAD.__cmake__:
            fem_vtk_post = True
        else:
            fem_vtk_post = False
        # because of the analysis itself count -1
        self.assertEqual(len(analysis.Group),
                         testtools.get_defmake_count(fem_vtk_post) - 1)
def setup(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # explanation object
    # just keep the following line and change text string in get_explanation method
    manager.add_explanation_obj(
        doc, get_explanation(manager.get_header(get_information())))

    # geometric object
    # name is important because the other method in this module use obj name
    l1 = Part.makeLine((-142.5, -142.5, 0), (142.5, -142.5, 0))
    l2 = Part.makeLine((142.5, -142.5, 0), (142.5, 142.5, 0))
    l3 = Part.makeLine((142.5, 142.5, 0), (-142.5, 142.5, 0))
    l4 = Part.makeLine((-142.5, 142.5, 0), (-142.5, -142.5, 0))
    wire = Part.Wire([l1, l2, l3, l4])
    shape = wire.extrude(Vector(0, 0, 1000))
    geom_obj = doc.addObject('Part::Feature', 'SquareTube')
    geom_obj.Shape = shape

    points_forces = []
    points_forces.append(Part.Vertex(-142.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 95.0, 0.0))
    points_forces.append(Part.Vertex(-142.5, 47.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 0.0, 0.0))
    points_forces.append(Part.Vertex(-142.5, -47.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, -95.0, 0.0))
    points_forces.append(Part.Vertex(142.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(-95.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(-47.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(0.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(47.5, -142.5, 0.0))
    points_forces.append(Part.Vertex(95.0, -142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, -95.0, 0.0))
    points_forces.append(Part.Vertex(142.5, -47.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 0.0, 0.0))
    points_forces.append(Part.Vertex(142.5, 47.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 95.0, 0.0))
    points_forces.append(Part.Vertex(95.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(47.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(0.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(-47.5, 142.5, 0.0))
    points_forces.append(Part.Vertex(-95.0, 142.5, 0.0))
    points_forces.append(Part.Vertex(-142.5, 118.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -118.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, 71.25, 0.0))
    points_forces.append(Part.Vertex(-142.5, 23.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -23.75, 0.0))
    points_forces.append(Part.Vertex(-142.5, -71.25, 0.0))
    points_forces.append(Part.Vertex(118.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(-71.25, -142.5, 0.0))
    points_forces.append(Part.Vertex(-118.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(-23.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(23.75, -142.5, 0.0))
    points_forces.append(Part.Vertex(71.25, -142.5, 0.0))
    points_forces.append(Part.Vertex(142.5, 118.75, 0.0))
    points_forces.append(Part.Vertex(142.5, -71.25, 0.0))
    points_forces.append(Part.Vertex(142.5, -118.75, 0.0))
    points_forces.append(Part.Vertex(142.5, -23.75, 0.0))
    points_forces.append(Part.Vertex(142.5, 23.75, 0.0))
    points_forces.append(Part.Vertex(142.5, 71.25, 0.0))
    points_forces.append(Part.Vertex(71.25, 142.5, 0.0))
    points_forces.append(Part.Vertex(118.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(23.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(-23.75, 142.5, 0.0))
    points_forces.append(Part.Vertex(-71.25, 142.5, 0.0))
    points_forces.append(Part.Vertex(-118.75, 142.5, 0.0))

    points_fixes = []
    points_fixes.append(Part.Vertex(-142.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 95.0, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 47.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 0.0, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -47.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -95.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-95.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-47.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(0.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(47.5, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(95.0, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -95.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -47.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 0.0, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 47.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 95.0, 1000.0))
    points_fixes.append(Part.Vertex(95.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(47.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(0.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-47.5, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-95.0, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 118.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -118.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 71.25, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, 23.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -23.75, 1000.0))
    points_fixes.append(Part.Vertex(-142.5, -71.25, 1000.0))
    points_fixes.append(Part.Vertex(118.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-71.25, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-118.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(-23.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(23.75, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(71.25, -142.5, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 118.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -71.25, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -118.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, -23.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 23.75, 1000.0))
    points_fixes.append(Part.Vertex(142.5, 71.25, 1000.0))
    points_fixes.append(Part.Vertex(71.25, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(118.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(23.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-23.75, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-71.25, 142.5, 1000.0))
    points_fixes.append(Part.Vertex(-118.75, 142.5, 1000.0))

    geoforces_obj = doc.addObject('Part::Feature', 'Forces')
    geoforces_obj.Shape = Part.makeCompound(points_forces)
    geofixes_obj = doc.addObject('Part::Feature', 'Fixes')
    geofixes_obj.Shape = Part.makeCompound(points_fixes)

    doc.recompute()

    if FreeCAD.GuiUp:
        geoforces_obj.ViewObject.PointColor = (1.0, 0.0, 0.0, 0.0)
        geoforces_obj.ViewObject.PointSize = 10.0
        geofixes_obj.ViewObject.PointColor = (1.0, 0.0, 0.0, 0.0)
        geofixes_obj.ViewObject.PointSize = 10.0
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.SplitInputWriter = False
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
    analysis.addObject(solver_obj)

    # shell thickness
    thickness_obj = ObjectsFem.makeElementGeometry2D(doc, 15.0,
                                                     "ShellThickness")
    analysis.addObject(thickness_obj)

    # material
    material_obj = ObjectsFem.makeMaterialSolid(doc, "FemMaterial")
    mat = material_obj.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    con_fixed.References = [(geofixes_obj, 'Vertex6'),
                            (geofixes_obj, 'Vertex15'),
                            (geofixes_obj, 'Vertex5'),
                            (geofixes_obj, 'Vertex29'),
                            (geofixes_obj, 'Vertex42'),
                            (geofixes_obj, 'Vertex30'),
                            (geofixes_obj, 'Vertex9'),
                            (geofixes_obj, 'Vertex31'),
                            (geofixes_obj, 'Vertex33'),
                            (geofixes_obj, 'Vertex32'),
                            (geofixes_obj, 'Vertex3'),
                            (geofixes_obj, 'Vertex34'),
                            (geofixes_obj, 'Vertex46'),
                            (geofixes_obj, 'Vertex1'),
                            (geofixes_obj, 'Vertex36'),
                            (geofixes_obj, 'Vertex11'),
                            (geofixes_obj, 'Vertex38'),
                            (geofixes_obj, 'Vertex12'),
                            (geofixes_obj, 'Vertex39'),
                            (geofixes_obj, 'Vertex13'),
                            (geofixes_obj, 'Vertex40'),
                            (geofixes_obj, 'Vertex16'),
                            (geofixes_obj, 'Vertex35'),
                            (geofixes_obj, 'Vertex14'),
                            (geofixes_obj, 'Vertex47'),
                            (geofixes_obj, 'Vertex20'),
                            (geofixes_obj, 'Vertex37'),
                            (geofixes_obj, 'Vertex18'),
                            (geofixes_obj, 'Vertex41'),
                            (geofixes_obj, 'Vertex17'),
                            (geofixes_obj, 'Vertex10'),
                            (geofixes_obj, 'Vertex26'),
                            (geofixes_obj, 'Vertex43'),
                            (geofixes_obj, 'Vertex21'),
                            (geofixes_obj, 'Vertex44'),
                            (geofixes_obj, 'Vertex19'),
                            (geofixes_obj, 'Vertex4'),
                            (geofixes_obj, 'Vertex28'),
                            (geofixes_obj, 'Vertex48'),
                            (geofixes_obj, 'Vertex22'),
                            (geofixes_obj, 'Vertex8'),
                            (geofixes_obj, 'Vertex23'),
                            (geofixes_obj, 'Vertex7'),
                            (geofixes_obj, 'Vertex24'),
                            (geofixes_obj, 'Vertex45'),
                            (geofixes_obj, 'Vertex27'),
                            (geofixes_obj, 'Vertex2'),
                            (geofixes_obj, 'Vertex25')]
    analysis.addObject(con_fixed)

    # con_force1
    con_force1 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce1")
    con_force1.References = [(geoforces_obj, 'Vertex1'),
                             (geoforces_obj, 'Vertex14')]
    con_force1.Force = 5555.56
    con_force1.Direction = (geom_obj, ["Edge9"])
    con_force1.Reversed = False
    analysis.addObject(con_force1)

    # con_force2
    con_force2 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce2")
    con_force2.References = [(geoforces_obj, 'Vertex2'),
                             (geoforces_obj, 'Vertex8')]
    con_force2.Force = 5555.56
    con_force2.Direction = (geom_obj, ["Edge3"])
    con_force2.Reversed = False
    analysis.addObject(con_force2)

    # con_force3
    con_force3 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce3")
    con_force3.References = [
        (geoforces_obj, 'Vertex20'),
        (geoforces_obj, 'Vertex21'),
        (geoforces_obj, 'Vertex22'),
        (geoforces_obj, 'Vertex23'),
        (geoforces_obj, 'Vertex24'),
    ]
    con_force3.Force = 27777.78
    con_force3.Direction = (geom_obj, ["Edge9"])
    con_force3.Reversed = False
    analysis.addObject(con_force3)

    # con_force4
    con_force4 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce4")
    con_force4.References = [
        (geoforces_obj, 'Vertex9'),
        (geoforces_obj, 'Vertex10'),
        (geoforces_obj, 'Vertex11'),
        (geoforces_obj, 'Vertex12'),
        (geoforces_obj, 'Vertex13'),
    ]
    con_force4.Force = 27777.78
    con_force4.Direction = (geom_obj, ["Edge3"])
    con_force4.Reversed = False
    analysis.addObject(con_force4)

    # con_force5
    con_force5 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce5")
    con_force5.References = [
        (geoforces_obj, 'Vertex43'),
        (geoforces_obj, 'Vertex44'),
        (geoforces_obj, 'Vertex45'),
        (geoforces_obj, 'Vertex46'),
        (geoforces_obj, 'Vertex47'),
        (geoforces_obj, 'Vertex48'),
    ]
    con_force5.Force = 66666.67
    con_force5.Direction = (geom_obj, ["Edge9"])
    con_force5.Reversed = False
    analysis.addObject(con_force5)

    # con_force6
    con_force6 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce6")
    con_force6.References = [
        (geoforces_obj, 'Vertex31'),
        (geoforces_obj, 'Vertex32'),
        (geoforces_obj, 'Vertex33'),
        (geoforces_obj, 'Vertex34'),
        (geoforces_obj, 'Vertex35'),
        (geoforces_obj, 'Vertex36'),
    ]
    con_force6.Force = 66666.67
    con_force6.Direction = (geom_obj, ["Edge3"])
    con_force6.Reversed = False
    analysis.addObject(con_force6)

    # con_force7
    con_force7 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce7")
    con_force7.References = [(geoforces_obj, 'Vertex1'),
                             (geoforces_obj, 'Vertex2')]
    con_force7.Force = 5555.56
    con_force7.Direction = (geom_obj, ["Edge11"])
    con_force7.Reversed = False
    analysis.addObject(con_force7)

    # con_force8
    con_force8 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce8")
    con_force8.References = [(geoforces_obj, 'Vertex8'),
                             (geoforces_obj, 'Vertex14')]
    con_force8.Force = 5555.56
    con_force8.Direction = (geom_obj, ["Edge6"])
    con_force8.Reversed = False
    analysis.addObject(con_force8)

    # con_force9
    con_force9 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce9")
    con_force9.References = [
        (geoforces_obj, 'Vertex3'),
        (geoforces_obj, 'Vertex4'),
        (geoforces_obj, 'Vertex5'),
        (geoforces_obj, 'Vertex6'),
        (geoforces_obj, 'Vertex7'),
    ]
    con_force9.Force = 27777.78
    con_force9.Direction = (geom_obj, ["Edge11"])
    con_force9.Reversed = False
    analysis.addObject(con_force9)

    # con_force10
    con_force10 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce10")
    con_force10.References = [
        (geoforces_obj, 'Vertex15'),
        (geoforces_obj, 'Vertex16'),
        (geoforces_obj, 'Vertex17'),
        (geoforces_obj, 'Vertex18'),
        (geoforces_obj, 'Vertex19'),
    ]
    con_force10.Force = 27777.78
    con_force10.Direction = (geom_obj, ["Edge6"])
    con_force10.Reversed = False
    analysis.addObject(con_force10)

    # con_force11
    con_force11 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce11")
    con_force11.References = [
        (geoforces_obj, 'Vertex25'),
        (geoforces_obj, 'Vertex26'),
        (geoforces_obj, 'Vertex27'),
        (geoforces_obj, 'Vertex28'),
        (geoforces_obj, 'Vertex29'),
        (geoforces_obj, 'Vertex30'),
    ]
    con_force11.Force = 66666.67
    con_force11.Direction = (geom_obj, ["Edge11"])
    con_force11.Reversed = False
    analysis.addObject(con_force11)

    # con_force12
    con_force12 = ObjectsFem.makeConstraintForce(doc, name="ConstraintForce12")
    con_force12.References = [
        (geoforces_obj, 'Vertex37'),
        (geoforces_obj, 'Vertex38'),
        (geoforces_obj, 'Vertex39'),
        (geoforces_obj, 'Vertex40'),
        (geoforces_obj, 'Vertex41'),
        (geoforces_obj, 'Vertex42'),
    ]
    con_force12.Force = 66666.67
    con_force12.Direction = (geom_obj, ["Edge6"])
    con_force12.Reversed = False
    analysis.addObject(con_force12)

    # mesh
    from .meshes.mesh_square_pipe_end_twisted_tria6 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        ObjectsFem.makeMeshGmsh(doc, get_meshname()))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 34
0
    def test_femobjects_derivedfromfem(self):
        # try to add all possible True types from inheritance chain see https://forum.freecadweb.org/viewtopic.php?f=10&t=32625
        doc = self.active_doc

        from femtools.femutils import is_derived_from

        materialsolid = ObjectsFem.makeMaterialSolid(doc)
        mesh = ObjectsFem.makeMeshGmsh(doc)
        solverelmer = ObjectsFem.makeSolverElmer(doc)

        self.assertTrue(is_derived_from(ObjectsFem.makeAnalysis(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeAnalysis(doc), 'Fem::FemAnalysis'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBearing(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBearing(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBearing(doc), 'Fem::ConstraintBearing'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc), 'Fem::ConstraintPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintBodyHeatSource(doc), 'Fem::ConstraintBodyHeatSource'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintContact(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintContact(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintContact(doc), 'Fem::ConstraintContact'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintDisplacement(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintDisplacement(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintDisplacement(doc), 'Fem::ConstraintDisplacement'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintElectrostaticPotential(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintElectrostaticPotential(doc), 'Fem::ConstraintPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintElectrostaticPotential(doc), 'Fem::ConstraintElectrostaticPotential'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFixed(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFixed(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFixed(doc), 'Fem::ConstraintFixed'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc), 'Fem::ConstraintPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFlowVelocity(doc), 'Fem::ConstraintFlowVelocity'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintFluidBoundary(doc), 'Fem::ConstraintFluidBoundary'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintForce(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintForce(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintForce(doc), 'Fem::ConstraintForce'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintGear(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintGear(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintGear(doc), 'Fem::ConstraintGear'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintHeatflux(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintHeatflux(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintHeatflux(doc), 'Fem::ConstraintHeatflux'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc), 'Fem::ConstraintPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialFlowVelocity(doc), 'Fem::ConstraintInitialFlowVelocity'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintInitialTemperature(doc), 'Fem::ConstraintInitialTemperature'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPlaneRotation(doc), 'Fem::ConstraintPlaneRotation'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPressure(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPressure(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPressure(doc), 'Fem::ConstraintPressure'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPulley(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPulley(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintPulley(doc), 'Fem::ConstraintPulley'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc), 'Fem::ConstraintPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintSelfWeight(doc), 'Fem::ConstraintSelfWeight'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintTemperature(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintTemperature(doc), 'Fem::Constraint'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintTemperature(doc), 'Fem::ConstraintTemperature'))

        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintTransform(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeConstraintTransform(doc), 'Fem::ConstraintTransform'))

        self.assertTrue(is_derived_from(ObjectsFem.makeElementFluid1D(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementFluid1D(doc), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementFluid1D(doc), 'Fem::FemElementFluid1D'))

        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry1D(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry1D(doc), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry1D(doc), 'Fem::FemElementGeometry1D'))

        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry2D(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry2D(doc), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementGeometry2D(doc), 'Fem::FemElementGeometry2D'))

        self.assertTrue(is_derived_from(ObjectsFem.makeElementRotation1D(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementRotation1D(doc), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeElementRotation1D(doc), 'Fem::FemElementRotation1D'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialFluid(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialFluid(doc), 'App::MaterialObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialFluid(doc), 'Fem::Material'))

        self.assertTrue(is_derived_from(materialsolid, 'App::DocumentObject'))
        self.assertTrue(is_derived_from(materialsolid, 'App::MaterialObjectPython'))
        self.assertTrue(is_derived_from(materialsolid, 'Fem::Material'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMaterialMechanicalNonlinear(doc, materialsolid), 'Fem::MaterialMechanicalNonlinear'))

        self.assertTrue(is_derived_from(mesh, 'App::DocumentObject'))
        self.assertTrue(is_derived_from(mesh, 'Fem::FemMeshObjectPython'))
        self.assertTrue(is_derived_from(mesh, 'Fem::FemMeshGmsh'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshBoundaryLayer(doc, mesh), 'Fem::FemMeshBoundaryLayer'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshGroup(doc, mesh), 'Fem::FemMeshGroup'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh), 'Fem::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshRegion(doc, mesh), 'Fem::FemMeshRegion'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMeshNetgen(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshNetgen(doc), 'Fem::FemMeshShapeNetgenObject'))

        self.assertTrue(is_derived_from(ObjectsFem.makeMeshResult(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshResult(doc), 'Fem::FemMeshObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeMeshResult(doc), 'Fem::FemMeshResult'))

        self.assertTrue(is_derived_from(ObjectsFem.makeResultMechanical(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeResultMechanical(doc), 'Fem::FemResultObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeResultMechanical(doc), 'Fem::FemResultMechanical'))

        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc), 'Fem::FemSolverObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc), 'Fem::FemSolverObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculixCcxTools(doc), 'Fem::FemSolverCalculixCcxTools'))

        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculix(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculix(doc), 'Fem::FemSolverObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculix(doc), 'Fem::FemSolverObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverCalculix(doc), 'Fem::FemSolverObjectCalculix'))

        self.assertTrue(is_derived_from(solverelmer, 'App::DocumentObject'))
        self.assertTrue(is_derived_from(solverelmer, 'Fem::FemSolverObject'))
        self.assertTrue(is_derived_from(solverelmer, 'Fem::FemSolverObjectPython'))
        self.assertTrue(is_derived_from(solverelmer, 'Fem::FemSolverObjectElmer'))

        self.assertTrue(is_derived_from(ObjectsFem.makeSolverZ88(doc), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverZ88(doc), 'Fem::FemSolverObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverZ88(doc), 'Fem::FemSolverObjectPython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeSolverZ88(doc), 'Fem::FemSolverObjectZ88'))

        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElasticity(doc, solverelmer), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElasticity(doc, solverelmer), 'App::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElasticity(doc, solverelmer), 'Fem::FemEquationElmerElasticity'))

        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElectrostatic(doc, solverelmer), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElectrostatic(doc, solverelmer), 'App::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationElectrostatic(doc, solverelmer), 'Fem::FemEquationElmerElectrostatic'))

        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer), 'App::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFlow(doc, solverelmer), 'Fem::FemEquationElmerFlow'))

        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFluxsolver(doc, solverelmer), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFluxsolver(doc, solverelmer), 'App::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationFluxsolver(doc, solverelmer), 'Fem::FemEquationElmerFluxsolver'))

        self.assertTrue(is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer), 'App::DocumentObject'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer), 'App::FeaturePython'))
        self.assertTrue(is_derived_from(ObjectsFem.makeEquationHeat(doc, solverelmer), 'Fem::FemEquationElmerHeat'))
Ejemplo n.º 35
0
def setup(doc=None, solvertype="ccxtools"):

    # init FreeCAD document
    if doc is None:
        doc = init_doc()

    # explanation object
    # just keep the following line and change text string in get_explanation method
    manager.add_explanation_obj(
        doc, get_explanation(manager.get_header(get_information())))

    # geometric objects
    # the part sketch
    arc_sketch = doc.addObject("Sketcher::SketchObject", "Arc_Sketch")
    arc_sketch.Placement = FreeCAD.Placement(Vector(0, 0, 0),
                                             Rotation(0, 0, 0, 1))
    arc_sketch.MapMode = "Deactivated"
    # not the exact geometry which makes a closed wire
    # exact geometry will be made by the constraints
    # the order is important for the constraints definition
    geoList = [
        Part.ArcOfCircle(Part.Circle(Vector(0, 0, 0), Vector(0, 0, 1), 47), 0,
                         math.pi),
        Part.ArcOfCircle(Part.Circle(Vector(-19, -22, 0), Vector(0, 0, 1), 89),
                         math.pi / 12, math.pi / 1.1),
        Part.LineSegment(Vector(-105, 0, 0), Vector(-47, 0, 0)),
        Part.LineSegment(Vector(47, 0, 0), Vector(67, 0, 0))
    ]
    arc_sketch.addGeometry(geoList, False)
    # https://wiki.freecadweb.org/Sketcher_ConstrainCoincident
    # but the best way is to add a constraint is watching
    # FreeCAD python console while create this one by the Gui
    conList = [
        Sketcher.Constraint("Coincident", 0, 3, -1, 1),
        Sketcher.Constraint("PointOnObject", 0, 2, -1),
        Sketcher.Constraint("PointOnObject", 0, 1, -1),
        Sketcher.Constraint("PointOnObject", 1, 2, -1),
        Sketcher.Constraint("PointOnObject", 1, 1, -1),
        Sketcher.Constraint("Coincident", 2, 1, 0, 2),
        Sketcher.Constraint("Coincident", 2, 2, 1, 2),
        Sketcher.Constraint("Coincident", 3, 1, 1, 1),
        Sketcher.Constraint("Coincident", 3, 2, 0, 1),
        Sketcher.Constraint("DistanceX", 2, 2, 2, 1, 58),
        Sketcher.Constraint("DistanceX", 3, 2, 3, 1, 20),
        Sketcher.Constraint("Radius", 0, 47),
        Sketcher.Constraint("Radius", 1, 89)
    ]
    arc_sketch.addConstraint(conList)

    # the part extrusion
    extrude_part = doc.addObject("Part::Extrusion", "ArcExtrude")
    extrude_part.Base = arc_sketch
    extrude_part.DirMode = "Custom"
    extrude_part.Dir = Vector(0.00, 0.00, 1.00)
    extrude_part.DirLink = None
    extrude_part.LengthFwd = 30.00
    extrude_part.LengthRev = 0.00
    extrude_part.Solid = True
    extrude_part.Reversed = False
    extrude_part.Symmetric = True
    extrude_part.TaperAngle = 0.00
    extrude_part.TaperAngleRev = 0.00

    # section plane sketch
    section_sketch = doc.addObject("Sketcher::SketchObject", "Section_Sketch")
    section_sketch.Placement = FreeCAD.Placement(
        Vector(0.000000, 0.000000, 0.000000),
        Rotation(0.000000, 0.000000, 0.000000, 1.000000))
    section_sketch.MapMode = "Deactivated"
    section_sketch.addGeometry(
        Part.LineSegment(Vector(-6.691961, -16.840161, 0),
                         Vector(75.156087, 79.421394, 0)), False)
    # section_sketch.ExternalGeometry = extrude_part

    # section plane extrusion
    extrude_section_plane = doc.addObject("Part::Extrusion",
                                          "SectionPlaneExtrude")
    extrude_section_plane.Base = section_sketch
    extrude_section_plane.DirMode = "Custom"
    extrude_section_plane.Dir = Vector(0.00, 0.00, -1.00)
    extrude_section_plane.DirLink = None
    extrude_section_plane.LengthFwd = 40.00
    extrude_section_plane.LengthRev = 0.00
    extrude_section_plane.Solid = False
    extrude_section_plane.Reversed = False
    extrude_section_plane.Symmetric = True
    extrude_section_plane.TaperAngle = 0.00
    extrude_section_plane.TaperAngleRev = 0.00

    # TODO the extrusions could be done with much less code, see BOLTS

    if FreeCAD.GuiUp:
        arc_sketch.ViewObject.hide()
        section_sketch.ViewObject.hide()
        extrude_part.ViewObject.hide()
        extrude_section_plane.ViewObject.hide()

    Slice = makeSlice(name="Slice")
    Slice.Base = extrude_part
    Slice.Tools = extrude_section_plane
    Slice.Mode = "Split"
    # Slice.Proxy.execute(Slice)
    Slice.purgeTouched()

    # compound filter to get the solids of the slice
    solid_one = makeCompoundFilter(name="SolidOne")
    solid_one.Base = Slice
    solid_one.FilterType = "specific items"
    solid_one.items = "0"
    # solid_one.Proxy.execute(solid_one)
    solid_one.purgeTouched()
    if FreeCAD.GuiUp:
        solid_one.Base.ViewObject.hide()

    solid_two = makeCompoundFilter(name="SolidTwo")
    solid_two.Base = Slice
    solid_two.FilterType = "specific items"
    solid_two.items = "1"
    # solid_two.Proxy.execute(solid_two)
    solid_two.purgeTouched()
    if FreeCAD.GuiUp:
        solid_two.Base.ViewObject.hide()

    # CompSolid out of the two solids
    geom_obj = makeBooleanFragments(name="BooleanFragments")
    geom_obj.Objects = [solid_one, solid_two]
    geom_obj.Mode = "CompSolid"
    # geom_obj.Proxy.execute(geom_obj)
    geom_obj.purgeTouched()
    if FreeCAD.GuiUp:
        solid_one.ViewObject.hide()
        solid_two.ViewObject.hide()
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Transparency = 50
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_obj = ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
    elif solvertype == "ccxtools":
        solver_obj = ObjectsFem.makeSolverCalculixCcxTools(
            doc, "CalculiXccxTools")
        solver_obj.WorkingDir = u""
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_obj.SplitInputWriter = False
        solver_obj.AnalysisType = "static"
        solver_obj.GeometricalNonlinearity = "linear"
        solver_obj.ThermoMechSteadyState = False
        solver_obj.MatrixSolverType = "default"
        solver_obj.IterationsControlParameterTimeUse = False
    analysis.addObject(solver_obj)

    # material
    material_obj = ObjectsFem.makeMaterialSolid(doc, "Material")
    mat = material_obj.Material
    mat["Name"] = "CalculiX-Steel"
    mat["YoungsModulus"] = "210000 MPa"
    mat["PoissonRatio"] = "0.30"
    material_obj.Material = mat
    analysis.addObject(material_obj)

    # constraint fixed
    con_fixed = ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    con_fixed.References = [(geom_obj, "Face9")]
    analysis.addObject(con_fixed)

    # constraint pressure
    con_pressure = ObjectsFem.makeConstraintPressure(doc, "ConstraintPressure")
    con_pressure.References = [(geom_obj, "Face1")]
    con_pressure.Pressure = 100.0
    con_pressure.Reversed = False
    analysis.addObject(con_pressure)

    # constraint section print
    con_sectionpr = ObjectsFem.makeConstraintSectionPrint(
        doc, "ConstraintSectionPrint")
    con_sectionpr.References = [(geom_obj, "Face6")]
    analysis.addObject(con_sectionpr)

    # mesh
    from .meshes.mesh_section_print_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        ObjectsFem.makeMeshGmsh(doc, get_meshname()))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc
Ejemplo n.º 36
0
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # part
    # create a CompSolid of two Boxes extract the CompSolid
    # we are able to remesh if needed
    boxlow = doc.addObject("Part::Box", "BoxLower")
    boxupp = doc.addObject("Part::Box", "BoxUpper")
    boxupp.Placement.Base = (0, 0, 10)

    # for BooleanFragments Occt >=6.9 is needed
    """
    import BOPTools.SplitFeatures
    bf = BOPTools.SplitFeatures.makeBooleanFragments(name="BooleanFragments")
    bf.Objects = [boxlow, boxupp]
    bf.Mode = "CompSolid"
    self.active_doc.recompute()
    bf.Proxy.execute(bf)
    bf.purgeTouched()
    for obj in bf.ViewObject.Proxy.claimChildren():
        obj.ViewObject.hide()
    self.active_doc.recompute()
    import CompoundTools.CompoundFilter
    cf = CompoundTools.CompoundFilter.makeCompoundFilter(name="MultiMatCompSolid")
    cf.Base = bf
    cf.FilterType = "window-volume"
    cf.Proxy.execute(cf)
    cf.purgeTouched()
    cf.Base.ViewObject.hide()
    """
    doc.recompute()

    if FreeCAD.GuiUp:
        import FreeCADGui
        FreeCADGui.ActiveDocument.activeView().viewAxonometric()
        FreeCADGui.SendMsgToActiveView("ViewFit")

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX")
        )[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools")
        )[0]
        solver_object.WorkingDir = u""
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "static"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = False
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsControlParameterTimeUse = False

    # material
    material_object_low = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterialLow")
    )[0]
    mat = material_object_low.Material
    mat["Name"] = "Aluminium-Generic"
    mat["YoungsModulus"] = "70000 MPa"
    mat["PoissonRatio"] = "0.35"
    mat["Density"] = "2700  kg/m^3"
    material_object_low.Material = mat
    material_object_low.References = [(boxlow, "Solid1")]
    analysis.addObject(material_object_low)

    material_object_upp = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterialUpp")
    )[0]
    mat = material_object_upp.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7980 kg/m^3"
    material_object_upp.Material = mat
    material_object_upp.References = [(boxupp, "Solid1")]

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "ConstraintFixed")
    )[0]
    # fixed_constraint.References = [(cf, "Face3")]
    fixed_constraint.References = [(boxlow, "Face5")]

    # pressure_constraint
    pressure_constraint = analysis.addObject(
        ObjectsFem.makeConstraintPressure(doc, "ConstraintPressure")
    )[0]
    # pressure_constraint.References = [(cf, "Face3")]
    pressure_constraint.References = [(boxlow, "Face5")]
    # pressure_constraint.References = [(cf, "Face9")]
    pressure_constraint.References = [(boxupp, "Face6")]
    pressure_constraint.Pressure = 1000.0
    pressure_constraint.Reversed = False

    # mesh
    from .meshes.mesh_boxes_2_vertikal_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(
        doc.addObject("Fem::FemMeshObject", mesh_name)
    )[0]
    femmesh_obj.FemMesh = fem_mesh

    doc.recompute()
    return doc
Ejemplo n.º 37
0
def setup(doc=None, solvertype="ccxtools"):
    # setup model

    if doc is None:
        doc = init_doc()

    # geometry object
    geom_obj = doc.addObject("Part::Box", "Box")
    geom_obj.Height = 25.4
    geom_obj.Width = 25.4
    geom_obj.Length = 203.2
    doc.recompute()

    if FreeCAD.GuiUp:
        geom_obj.ViewObject.Document.activeView().viewAxonometric()
        geom_obj.ViewObject.Document.activeView().fitAll()

    # analysis
    analysis = ObjectsFem.makeAnalysis(doc, "Analysis")

    # solver
    if solvertype == "calculix":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculix(doc, "SolverCalculiX"))[0]
    elif solvertype == "ccxtools":
        solver_object = analysis.addObject(
            ObjectsFem.makeSolverCalculixCcxTools(doc, "CalculiXccxTools"))[0]
        solver_object.WorkingDir = u""
    # should be possible with elmer too
    # elif solvertype == "elmer":
    #     analysis.addObject(ObjectsFem.makeSolverElmer(doc, "SolverElmer"))
    else:
        FreeCAD.Console.PrintWarning(
            "Not known or not supported solver type: {}. "
            "No solver object was created.\n".format(solvertype))
    if solvertype == "calculix" or solvertype == "ccxtools":
        solver_object.SplitInputWriter = False
        solver_object.AnalysisType = "thermomech"
        solver_object.GeometricalNonlinearity = "linear"
        solver_object.ThermoMechSteadyState = True
        solver_object.MatrixSolverType = "default"
        solver_object.IterationsThermoMechMaximum = 2000
        solver_object.IterationsControlParameterTimeUse = True

    # material
    material_object = analysis.addObject(
        ObjectsFem.makeMaterialSolid(doc, "MechanicalMaterial"))[0]
    mat = material_object.Material
    mat["Name"] = "Steel-Generic"
    mat["YoungsModulus"] = "200000 MPa"
    mat["PoissonRatio"] = "0.30"
    mat["Density"] = "7900 kg/m^3"
    mat["ThermalConductivity"] = "43.27 W/m/K"  # SvdW: Change to Ansys model values
    mat["ThermalExpansionCoefficient"] = "12 um/m/K"
    mat["SpecificHeat"] = "500 J/kg/K"  # SvdW: Change to Ansys model values
    material_object.Material = mat

    # fixed_constraint
    fixed_constraint = analysis.addObject(
        ObjectsFem.makeConstraintFixed(doc, "FemConstraintFixed"))[0]
    fixed_constraint.References = [(geom_obj, "Face1")]

    # initialtemperature_constraint
    initialtemperature_constraint = analysis.addObject(
        ObjectsFem.makeConstraintInitialTemperature(
            doc, "FemConstraintInitialTemperature"))[0]
    initialtemperature_constraint.initialTemperature = 300.0

    # temperature_constraint
    temperature_constraint = analysis.addObject(
        ObjectsFem.makeConstraintTemperature(doc,
                                             "FemConstraintTemperature"))[0]
    temperature_constraint.References = [(geom_obj, "Face1")]
    temperature_constraint.Temperature = 310.93

    # heatflux_constraint
    heatflux_constraint = analysis.addObject(
        ObjectsFem.makeConstraintHeatflux(doc, "FemConstraintHeatflux"))[0]
    heatflux_constraint.References = [(geom_obj, "Face3"), (geom_obj, "Face4"),
                                      (geom_obj, "Face5"), (geom_obj, "Face6")]
    heatflux_constraint.AmbientTemp = 255.3722
    heatflux_constraint.FilmCoef = 5.678

    # mesh
    from .meshes.mesh_thermomech_spine_tetra10 import create_nodes, create_elements
    fem_mesh = Fem.FemMesh()
    control = create_nodes(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating nodes.\n")
    control = create_elements(fem_mesh)
    if not control:
        FreeCAD.Console.PrintError("Error on creating elements.\n")
    femmesh_obj = analysis.addObject(ObjectsFem.makeMeshGmsh(doc,
                                                             mesh_name))[0]
    femmesh_obj.FemMesh = fem_mesh
    femmesh_obj.Part = geom_obj
    femmesh_obj.SecondOrderLinear = False

    doc.recompute()
    return doc