def test_VerifWeHaveDataForEachSecond(self): tick = tk.ticker() tick.PrepareFile('1mintestdata.csv') startDate = tick.Data.index[0] endDate = tick.Data.index[-1] dataSize = len(tick.Data['price']) numSeconds = endDate - startDate min =(numSeconds + 1)/60 self.assertEqual(min, dataSize)
def GetTicker(self, Pair = PairType.BtcNis): url = self.Url + "Exchanges/" + str(Pair) + "/Ticker.json" response = self.DownloadString(url) _json = json.loads(response.decode("utf-8")) return Ticker(_json['h'], _json['l'], _json['ll'], _json['a'], _json['av'])
def main(): for ticker_id in Ticker.getListVN30(): file = '../data/VNX/' + ticker_id + '/Price.csv' ticker_data = pd.read_csv(file) data = np.array(ticker_data) getResult(ticker_id, data)
def index(stock): print(stock) tic = Ticker.Ticker(stock) date = tic.data.index _open = tic.data['Open'] close = tic.data['Close'] high = tic.data['High'] low = tic.data['Low'] volume = tic.data['Volume'] ao = tic.data['ao'] ac = tic.data['ac'] ad = tic.data['a/d'] atr = tic.data['atr'] bep = tic.data['bears_power'] bup = tic.data['bulls_power'] cci = tic.data['cci'] dem = tic.data['dem'] ema = tic.data['ema'] frc = tic.data['frc'] cncs = tic.data['chikou_span'] cnts = tic.data['tenkan_sen'] cnks = tic.data['kijun_sen'] cnssa = tic.data['senkou_span_a'] cnssb = tic.data['senkou_span_b'] bw_mfi = tic.data['bw_mfi'] mfi = tic.data['mfi'] momentum = tic.data['momentum'] macd_v = tic.data['macd_value'] macd_s = tic.data['macd_signal'] bbu = tic.data['bollinger_up'] bbm = tic.data['bollinger_mid'] bbb = tic.data['bollinger_bottom'] sma = tic.data['sma'] fr_h = tic.data['fractal_highs'] fr_l = tic.data['fractal_lows'] arr = [] print('len', len(tic.data)) for i in range(len(tic.data)): dic = {} dic['open'] = _open[i] #dic['date'] = date[i].__str__() dic['date'] = date[i].strftime("%Y-%m-%-d") #print(dic['open']) dic['close'] = close[i] dic['high'] = high[i] dic['low'] = low[i] dic['volume'] = volume[i] dic['awesome_oss'] = ao[i] dic['accel_oss'] = ac[i] dic['accum_dist'] = ad[i] dic['avg_true_range'] = atr[i] dic['bears_power'] = bep[i] dic['bulls_power'] = bup[i] dic['commodity_chan_index'] = cci[i] dic['demarker'] = dem[i] dic['exp_moving_avg'] = ema[i] dic['force_index'] = frc[i] dic['chikou_span'] = cncs[i] dic['tenkan_sen'] = cnts[i] dic['kijun_sen'] = cnks[i] dic['senkou_span_a'] = cnssa[i] dic['senkou_span_b'] = cnssb[i] dic['market_facilitation_index'] = bw_mfi[i] dic['momentum'] = momentum[i] dic['money_flow_index'] = mfi[i] dic['macd_value'] = macd_v[i] dic['macd_signal'] = macd_s[i] dic['bollinger_up'] = bbu[i] dic['bollinger_mid'] = bbm[i] dic['bollinger_bottom'] = bbb[i] dic['sma'] = sma[i] dic['fract_high'] = fr_h[i] dic['fract_low'] = fr_l[i] arr.append(dic) for g in arr: for key, value in g.items(): if key == 'date': continue if value > 0: g[key] = int(value * 1000) / 1000 else: g[key] = None res = {} res['data'] = arr return res
import numpy as np import pandas as pd import Ticker import platform import os import datetime import time import common_vars as _v os.chdir('../') path = os.getcwd() blue_chip_tickers = Ticker.getListBlueChips2020() close_col_index = 4 open_col_index = 1 date_col_index = 0 budget = 5000 # 5tr test_from_date = "2020-01-01" # Y-m-d from_date = time.strptime(test_from_date, "%Y-%m-%d") buyAndSellDays = [[0, 2], [0, 3], [0, 4], [1, 3], [1, 4], [1, 0], [2, 4], [2, 0], [2, 1], [3, 0], [3, 1], [3, 2], [4, 1], [4, 2], [4, 3]] ticker_id = 'BID' best_profit = 0 best_buy_day = -1 best_sell_day = -1 best_profit_ticker = '' highlight = '' if platform.system() == 'Windows': file = path + "\\data\\VNX\\" + ticker_id + '\\Price.csv' if platform.system() != 'Windows': file = path + '/data/VNX/' + ticker_id + '/Price.csv'
def test_PrepareFile(self): tick = tk.ticker() tick.PrepareFile('1mintestdata.csv') self.assertTrue(True)