def dummy(): # running_time() pl_mat, cms, c = topo.read_data('../data/topologies/waxman_30_2_870.txt') ufuncs = utility.read_ufuncs("../data/ufuncs/uf_870.txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( pl_mat, cms, c, scaled_ufuncs, len(cms)) tot_time_1 = time.time() - start_time #print("UMMP total time is "+str(tot_time)) start_time = time.time() initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, scaled_ufuncs, it=10, th=0.03) tot_time_2 = time.time() - start_time #print("UIEWF total time is "+str(tot_time)) start_time = time.time() cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=10, th=0.03, k=500) tot_time_3 = time.time() - start_time #print("Hybrid total time is "+str(tot_time)) print("UMMP total time is " + str(tot_time_1)) print("UIEWF total time is " + str(tot_time_2)) print("Hybrid total time is " + str(tot_time_3))
def UIEWF_time(): size = [20, 30, 40] times = [] for s in size: time_sum = 0 for i in range(1, 11): ufuncs = utility.read_ufuncs("../data/ufuncs/uf_" + str(s * (s - 1)) + "_v" + str(i) + ".txt") scaled_ufuncs = utility.scale_ufuncs(ufuncs) pl_mat, cms, c = topo.read_data("../data/topologies/waxman_" + str(s) + "_3_" + str(s * (s - 1)) + ".txt") new_c = [10000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) start_time = time.time() initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, scaled_ufuncs, it=100, th=0.03) tot_time = time.time() - start_time time_sum += tot_time avg_time = time_sum / 10 times.append(avg_time) print(times)
def hybrid_alloc(pl_mat, cms, c, ufuncs, it, th, k): path_num = pl_mat.shape[0] link_num = pl_mat.shape[1] cms_alloc, paths_alloc, active_cms = UMMP.max_min_program( pl_mat, cms, c, ufuncs, k) splits = np.zeros(path_num) paths_alloc = list(paths_alloc) for cm in cms: flow_sum = 0 for p in cm: flow_sum += paths_alloc[p] if flow_sum == 0: for p in cm: splits[p] = 1 / len(cm) else: for p in cm: splits[p] = paths_alloc[p] / flow_sum cms_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, splits, ufuncs, it, th) return cms_alloc, diffs
def running_time(): plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.labelsize'] = 18 fig, ax = plt.subplots() fig.subplots_adjust(left=0.12, top=0.99, bottom=0.13, right=0.995) pl_mat, cms, c = topo.read_data( 'D:/utility-mmf/scripts/dataset/convergence/waxman_20_4_380_1.txt') new_c = [10000.0 for i in range(len(c))] c = new_c cm_nums = np.arange(100, 381, 40) UIEWF_times = [0 for i in range(len(cm_nums))] UIEWF_bin_times = [0 for i in range(len(cm_nums))] for i in range(3, 4): ufuncs = utility.read_ufuncs( "D:/utility-mmf/scripts/dataset/convergence/uf_380_time_" + str(i) + ".txt") for i in range(len(cm_nums)): cm_num = cm_nums[i] comms = cms[:cm_num] util_functions = ufuncs[:cm_num] start_time = time.time() initial_splits = UIEWF.exp_decay_splits(comms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, comms, c, initial_splits, util_functions, 5) ummf_time = time.time() - start_time UIEWF_times[i] += ummf_time for i in range(len(cm_nums)): cm_num = cm_nums[i] comms = cms[:cm_num] util_functions = ufuncs[:cm_num] start_time = time.time() initial_splits = UIEWF.exp_decay_splits(comms, pl_mat) cm_alloc, diffs = UIEWF_bin.Util_IEWF(pl_mat, comms, c, initial_splits, util_functions, 5) ummf_time = time.time() - start_time UIEWF_bin_times[i] += ummf_time ax.set_ylabel('Time(s)') ax.set_xlabel('Number of commodities') times = [t / 1 for t in UIEWF_times] bin_times = [t / 1 for t in UIEWF_bin_times] ax.plot(cm_nums, times, label='UIEWF', marker='.') ax.plot(cm_nums, bin_times, label='UIEWF-bin', marker='v') plt.xticks(np.arange(100, 381, 40)) plt.grid(ls='--') plt.legend() plt.show()
def test(): ufuncs=utility.read_ufuncs("D:/github/UtiliyUpwardMMF/data/ufuncs/uf_110.txt") scaled_ufuncs=scale_utility_functions(ufuncs,100) pl_mat,cms,c=topo.read_data("D:/github/UtiliyUpwardMMF/data/topologies/abilene_2_110.txt") initial_splits=UIEWF.exp_decay_splits(cms,pl_mat) model={'commodities':cms,'utility_functions':scaled_ufuncs,'splits':initial_splits,'pl_matrix':pl_mat,'capacities':c}
def performance_abilene(): plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = 18 plt.rcParams['font.weight'] = 'bold' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.labelsize'] = 18 fig, ax = plt.subplots() fig.subplots_adjust(left=0.16, top=0.995, bottom=0.13, right=0.995) ufuncs = utility.read_ufuncs("../data/ufuncs/uf_110.txt") pl_mat, cms, c = topo.read_data('../data/topologies/abilene_2_110.txt') scaled_ufuncs = utility.scale_ufuncs(ufuncs) new_c = [15000.0 for i in range(len(c))] c = new_c pl_mat = np.matrix(pl_mat) x = [i for i in range(1, 111)] #initial_splits=UIEWF.uniform_splits(cms) #cm_alloc,diffs=UIEWF.Util_IEWF(pl_mat,cms,c,initial_splits,scaled_ufuncs,20) #util_alloc=utility.flow2util(ufuncs,cm_alloc) #ax.plot(x,sorted(util_alloc),label='uniform',linestyle='solid') #initial_splits=UIEWF.random_splits(cms) #cm_alloc,diffs=UIEWF.Util_IEWF(pl_mat,cms,c,initial_splits,scaled_ufuncs,20) #util_alloc=utility.flow2util(ufuncs,cm_alloc) #ax.plot(x,sorted(util_alloc),label='random',linestyle='solid') #initial_splits=UIEWF.exp_decay_splits(cms,pl_mat) #cm_alloc,diffs=UIEWF.Util_IEWF(pl_mat,cms,c,initial_splits,scaled_ufuncs,20) #util_alloc=utility.flow2util(ufuncs,cm_alloc) #ax.plot(x,sorted(util_alloc),label='len_decay',linestyle='solid') initial_splits = UIEWF.exp_congestion_decay_splits(cms, pl_mat) cm_alloc, diffs = UIEWF.Util_IEWF(pl_mat, cms, c, initial_splits, scaled_ufuncs, it=20, th=0.00001) util_alloc = utility.flow2util(ufuncs, cm_alloc) ax.plot(x, sorted(util_alloc), label='U-IEWF', linestyle='dotted') cm_alloc, paths_alloc, useful_when_error = UMMP.max_min_program( pl_mat, cms, c, scaled_ufuncs, len(cms)) util_alloc = utility.flow2util(ufuncs, cm_alloc) ax.plot(x, sorted(util_alloc), label='Optimal', linestyle='solid') cm_alloc, diffs = Hybrid.hybrid_alloc(pl_mat, cms, c, scaled_ufuncs, it=20, th=0.00001, k=20) util_alloc = utility.flow2util(ufuncs, cm_alloc) ax.plot(x, sorted(util_alloc), label='Hybrid-20', linestyle='dashed') ax.set_xticks(np.arange(0, 101, step=10)) ax.set_ylabel('Utility') ax.set_xlabel('Commodity Index') #ax.grid(ls='--') ax.legend() plt.show()