def main(): ''' Parse command line arguments and execute the code ''' start = time.time() parser = argparse.ArgumentParser() parser.add_argument('--det_frames_folder', default='det_frames/', type=str) parser.add_argument('--det_result_folder', default='det_results/', type=str) parser.add_argument('--result_folder', default='summary_result/', type=str) parser.add_argument('--summary_file', default='results.txt', type=str) parser.add_argument('--output_name', default='output.mp4', type=str) parser.add_argument('--perc', default=100, type=int) #parser.add_argument('--path_video', dest='path_video', required=True, type=str) parser.add_argument('--path_video', dest='path_video', type=str) args = parser.parse_args() args.path_video = './DAVIS-2017-TrainVal.mp4' #with tf.device('/gpu:0'): frame_list, frames = Utils_Video.extract_frames(args.path_video, args.perc) det_frame_list, det_result_list = still_image_YOLO_DET( frame_list, frames, args.det_frames_folder, args.det_result_folder) Utils_Video.make_video_from_list(args.output_name, det_frame_list) print_YOLO_DET_result(det_result_list, args.result_folder, args.summary_file) end = time.time() print("Elapsed Time:%d Seconds" % (end - start)) print("Running Completed with Success!!!")
def main(): ''' Parse command line arguments and execute the code ''' start = time.time() parser = argparse.ArgumentParser() parser.add_argument('--det_frames_folder', default='det_frames/', type=str) parser.add_argument('--det_result_folder', default='det_results/', type=str) parser.add_argument('--result_folder', default='summary_result/', type=str) parser.add_argument('--summary_file', default='results.txt', type=str) parser.add_argument('--output_name', default='output.mp4', type=str) parser.add_argument('--perc', default=5, type=int) parser.add_argument('--path_video', required=True, type=str) args = parser.parse_args() frame_list, frames = Utils_Video.extract_frames(args.path_video, args.perc) det_frame_list,det_result_list=still_image_YOLO_DET(frame_list, frames, args.det_frames_folder,args.det_result_folder) Utils_Video.make_video_from_list(args.output_name, det_frame_list) print_YOLO_DET_result(det_result_list,args.result_folder, args.summary_file) end = time.time() print("Elapsed Time:%d Seconds"%(end-start)) print("Running Completed with Success!!!")
def main(): ''' Parse command line arguments and execute the code ''' ######### TENSORBOX PARAMETERS start = time.time() parser = argparse.ArgumentParser() # parser.add_argument('--result_folder', default='summary_result/', type=str) # parser.add_argument('--summary_file', default='results.txt', type=str) parser.add_argument('--output_name', default='output.mp4', type=str) parser.add_argument('--hypes', default='./TENSORBOX/hypes/overfeat_rezoom.json', type=str) parser.add_argument('--weights', default='./TENSORBOX/data/save.ckpt-1090000', type=str) parser.add_argument('--perc', default=2, type=int) parser.add_argument('--path_video', required=True, type=str) args = parser.parse_args() # hypes_file = './hypes/overfeat_rezoom.json' # weights_file= './output/save.ckpt-1090000' path_video_folder = os.path.splitext(os.path.basename(args.path_video))[0] pred_idl = './%s/%s_val.idl' % (path_video_folder, path_video_folder) idl_filename = path_video_folder + '/' + path_video_folder + '.idl' frame_list = [] frame_list = Utils_Video.extract_idl_from_frames(args.path_video, args.perc, path_video_folder, 'frames/', idl_filename) progress = progressbar.ProgressBar(widgets=[ progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage(), ' ', progressbar.ETA() ]) for image_path in progress(frame_list): Utils_Image.resizeImage(image_path) Utils_Image.resizeImage(-1) det_frame_list = Utils_Tensorbox.still_image_TENSORBOX_singleclass( frame_list, path_video_folder, args.hypes, args.weights, pred_idl) Utils_Video.make_video_from_list(args.output_name, det_frame_list) end = time.time() print("Elapsed Time:%d Seconds" % (end - start)) print("Running Completed with Success!!!")
def main(): ''' Parse command line arguments and execute the code ''' ######### TENSORBOX PARAMETERS start = time.time() parser = argparse.ArgumentParser() parser.add_argument('--det_frames_folder', default='det_frames/', type=str) parser.add_argument('--det_result_folder', default='det_results/', type=str) parser.add_argument('--frames_folder', default='frames/', type=str) # parser.add_argument('--result_folder', default='summary_result/', type=str) # parser.add_argument('--summary_file', default='results.txt', type=str) parser.add_argument('--output_name', default='output.mp4', type=str) parser.add_argument('--hypes', default='./TENSORBOX/hypes/overfeat_rezoom.json', type=str) parser.add_argument('--weights', default='./TENSORBOX/output/save.ckpt-1090000', type=str) parser.add_argument('--perc', default=2, type=int) parser.add_argument('--path_video', required=True, type=str) args = parser.parse_args() # hypes_file = './hypes/overfeat_rezoom.json' # weights_file= './output/save.ckpt-1090000' path_video_folder = os.path.splitext(os.path.basename(args.path_video))[0] pred_idl = './%s/%s_val.idl' % (path_video_folder, path_video_folder) idl_filename=path_video_folder+'/'+path_video_folder+'.idl' frame_list=[] frame_list = Utils_Video.extract_idl_from_frames(args.path_video, args.perc, path_video_folder, args.frames_folder, idl_filename ) progress = progressbar.ProgressBar(widgets=[progressbar.Bar('=', '[', ']'), ' ',progressbar.Percentage(), ' ',progressbar.ETA()]) for image_path in progress(frame_list): Utils_Image.resizeImage(image_path) det_frame_list=still_image_TENSORBOX(idl_filename, frame_list, args.det_frames_folder, args.det_result_folder, args.frames_folder, path_video_folder, args.hypes, args.weights, pred_idl) Utils_Video.make_video_from_list(args.output_name, det_frame_list) end = time.time() print("Elapsed Time:%d Seconds"%(end-start)) print("Running Completed with Success!!!")
def main(): ''' Parse command line arguments and execute the code ''' ######### TENSORBOX PARAMETERS start = time.time() parser = argparse.ArgumentParser() # parser.add_argument('--result_folder', default='summary_result/', type=str) # parser.add_argument('--summary_file', default='results.txt', type=str) parser.add_argument('--output_name', default='output.mp4', type=str) parser.add_argument('--hypes', default='./TENSORBOX/hypes/overfeat_rezoom.json', type=str) parser.add_argument('--weights', default='./TENSORBOX/data/save.ckpt-1250000', type=str) parser.add_argument('--perc', default=100, type=int) parser.add_argument('--path_video', default='DAVIS-2017-TrainVal.mp4', type=str) # required=True, type=str) args = parser.parse_args() # hypes_file = './hypes/overfeat_rezoom.json' # weights_file= './output/save.ckpt-1090000' path_video_folder = os.path.splitext(os.path.basename(args.path_video))[0] pred_idl = './%s/%s_val.idl' % (path_video_folder, path_video_folder) idl_filename = path_video_folder + '/' + path_video_folder + '.idl' frame_tensorbox = [] frame_inception = [] frame_tensorbox, frame_inception = Utils_Video.extract_frames_incten( args.path_video, args.perc, path_video_folder, idl_filename) progress = progressbar.ProgressBar(widgets=[ progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage(), ' ', progressbar.ETA() ]) for image_path in progress(frame_tensorbox): Utils_Image.resizeImage(image_path) Utils_Image.resizeImage(-1) video_info = Utils_Tensorbox.bbox_det_TENSORBOX_multiclass( frame_tensorbox, path_video_folder, args.hypes, args.weights, pred_idl) tracked_video = Utils_Video.recurrent_track_objects(video_info) # tracked_video=utils_video.track_objects(video_info) # labeled_video=Utils_Imagenet.label_video(tracked_video, frame_inception) labeled_video = Utils_Imagenet.recurrent_label_video( tracked_video, frame_inception) # tracked_video=utils_video.track_objects(video_info) # tracked_video=utils_video.track_and_label_objects(video_info) labeled_frames = Utils_Video.draw_rectangles(path_video_folder, labeled_video) Utils_Video.make_tracked_video(args.output_name, labeled_frames) frame.saveVideoResults(idl_filename, labeled_video) # utils_video.make_tracked_video(args.output_name, labeled_video) end = time.time() print("Elapsed Time:%d Seconds" % (end - start)) print("Running Completed with Success!!!")