Ejemplo n.º 1
0
class FastRadialFeatureFinder(EyeFeatureFinder):

    def __init__(self):

        # self.backend = VanillaBackend()
        self.backend = WovenBackend()
        # self.backend = OpenCLBackend()

        self.target_kpixels = 80.0  # 8.0
        self.max_target_kpixels = 50.0
        self.min_target_kpixels = 1.
        self.parameters_updated = 1

        self.alpha = 10.
        self.min_radius_fraction = 0.0126  # 1./2000.
        self.max_radius_fraction = 0.12  # 1./8.
        self.min_fraction = 1. / 1000.
        self.max_fraction = 0.35
        self.radius_steps = 6
        self.radiuses_to_try = [1]
        self.ds_factor = 1

        self.correct_downsampling = False

        self.do_refinement_phase = 0

        self.return_sobel = 0

        self.albino_mode = False
        self.albino_threshold = 10.

        self.cache_sobel = True
        self.cached_sobel = None
        self.compute_sobel_avg = True  # for autofocus
        self.sobel_avg = None

        # Voting
        self.outlier_cutoff = 1.
        self.maxmin_consensus_votes = 1

        self.image_contribution = 1

        self.last_positions = []

        self.available_filters = [u'sepfir', u'spline', u'fft', u'convolve2d']

        self.result = None

        self.restrict_top = 0
        self.restrict_bottom = 123
        self.restrict_left = 0
        self.restrict_right = 164

    # analyze the image and return dictionary of features gleaned
    # from it
    # @clockit
    def analyze_image(self, image, guess=None, **kwargs):
        # print "fr"
        im_array = image
        # im_array = image.astype(double)
        im_array = im_array[::self.ds_factor, ::self.ds_factor]

        if guess != None:
            features = guess
        else:
            features = {'pupil_size': None, 'cr_size': None}

        if self.parameters_updated or self.backend.cached_shape \
            != im_array.shape:
            print 'Recaching...'
            print 'Target kPixels: ', self.target_kpixels
            print 'Max Radius Fraction: ', self.max_radius_fraction
            print 'Radius steps: ', self.radius_steps
            im_pixels = image.shape[0] * image.shape[1]
            self.ds_factor = int(sqrt(im_pixels / int(self.target_kpixels
                                 * 1000)))
            if self.ds_factor <= 0:
                self.ds_factor = 1
            im_array = image[::self.ds_factor, ::self.ds_factor]

            self.backend.autotune(im_array)
            self.parameters_updated = 0

            self.radiuses_to_try = linspace(ceil(self.min_radius_fraction
                    * im_array.shape[0]), ceil(self.max_radius_fraction
                    * im_array.shape[0]), self.radius_steps)
            self.radiuses_to_try = unique(self.radiuses_to_try.astype(int))
            print 'Radiuses to try: ', self.radiuses_to_try
            print 'Downsampling factor: ', self.ds_factor

        ds = self.ds_factor

        S = self.backend.fast_radial_transform(im_array, self.radiuses_to_try,
                self.alpha)

        S[:, 0:self.restrict_left] = -1.
        S[:, self.restrict_right:] = -1.
        S[0:self.restrict_top, :] = -1.
        S[self.restrict_bottom:, :] = -1.

        if self.albino_mode:
            (pupil_coords, cr_coords) = self.find_albino_features(S, im_array)
        else:
            (pupil_coords, cr_coords) = self.backend.find_minmax(S)

        if pupil_coords == None:
            pupil_coords = array([0., 0.])

        if cr_coords == None:
            cr_coords = array([0., 0.])

        if self.correct_downsampling:
            features['pupil_position'] = array([pupil_coords[0],
                    pupil_coords[1]]) * ds
            features['cr_position'] = array([cr_coords[0], cr_coords[1]]) * ds
            features['dwnsmp_factor_coord'] = 1
        else:
            features['pupil_position'] = array([pupil_coords[0],
                    pupil_coords[1]])
            features['cr_position'] = array([cr_coords[0], cr_coords[1]])
            features['dwnsmp_factor_coord'] = ds

        features['transform'] = S
        features['im_array'] = im_array
        features['im_shape'] = im_array.shape

        features['restrict_top'] = self.restrict_top
        features['restrict_bottom'] = self.restrict_bottom
        features['restrict_left'] = self.restrict_left
        features['restrict_right'] = self.restrict_right

        if self.return_sobel:
            # this is very inefficient, and only for debugging
            (m, x, y) = self.backend.sobel3x3(im_array)
            features['sobel'] = m

        self.result = features

    def update_parameters(self):
        self.parameters_updated = 1

    def get_result(self):
        return self.result

    def find_albino_features(self, T, im):
        import scipy.ndimage as ndi

        binarized = zeros_like(T)
        binarized[T > self.albino_threshold] = True
        (labels, nlabels) = ndi.label(binarized)
        slices = ndi.find_objects(labels)

        intensities = []
        transform_means = []

        if len(slices) < 2:
            return (None, None)

        for s in slices:

            transform_means.append(mean(T[s]))
            intensities.append(mean(im[s]))

        sorted_transform_means = argsort(transform_means)
        candidate1 = sorted_transform_means[-1]
        candidate2 = sorted_transform_means[-2]

        c1_center = array(ndi.center_of_mass(im, labels, candidate1 + 1))
        c2_center = array(ndi.center_of_mass(im, labels, candidate2 + 1))

        if intensities[candidate1] > intensities[candidate2]:
            return (c2_center, c1_center)
        else:
            return (c1_center, c2_center)
Ejemplo n.º 2
0
    from pylab import *
    
    test_im = (rand(2250,2250)).astype(numpy.float32)
    #test_im = (rand(768,1024)).astype(numpy.float32)
    row = array([0.25, 0.3, 0.4]).astype(numpy.float32)
    #row = array([0.25, 0.3, 0.4, 0.6, 0.7, 0.6, 0.4, 0.3, 0.25]).astype(numpy.float32)
    #row = array([0.25, 0.4, 0.6, 0.4, 0.25]).astype(numpy.float32)
    row = row / sum(row)
    
    col = row
    
    cl_backend = OpenCLBackend()
    vanilla_backend = VanillaBackend()
    woven_backend = WovenBackend()
    
    woven_backend.autotune(test_im)
    cl_backend.autotune(test_im)
    print("CL Filtering...")
    #row_dev = cl.Buffer(cl_backend.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, 0, row.astype(float32))
    #col_dev = cl.Buffer(cl_backend.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, 0, col.astype(float32))
    
    row_dev = DeviceBuffer(cl_backend.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, row.astype(float32))
    col_dev = DeviceBuffer(cl_backend.ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, col.astype(float32))
    
    #print cl_backend.device.name
    
    cl_filtered = cl_backend.separable_convolution2d(test_im.astype(float32), row_dev, col_dev, readback_from_device=False, im_shape=test_im.shape, row_shape=row.shape, col_shape=col.shape)
    for i in range(0,8):
        cl_filtered = cl_backend.separable_convolution2d(cl_filtered, row_dev, col_dev, readback_from_device=False, im_shape=test_im.shape, row_shape=row.shape, col_shape=col.shape)
    cl_filtered = cl_backend.separable_convolution2d(cl_filtered, row_dev, col_dev, readback_from_device=True, im_shape=test_im.shape, row_shape=row.shape, col_shape=col.shape)
Ejemplo n.º 3
0
class FastRadialFeatureFinder(EyeFeatureFinder):
    def __init__(self):

        # self.backend = VanillaBackend()
        self.backend = WovenBackend()
        # self.backend = OpenCLBackend()

        self.target_kpixels = 80.0  # 8.0
        self.max_target_kpixels = 50.0
        self.min_target_kpixels = 1.
        self.parameters_updated = 1

        self.alpha = 10.
        self.min_radius_fraction = 0.0126  # 1./2000.
        self.max_radius_fraction = 0.12  # 1./8.
        self.min_fraction = 1. / 1000.
        self.max_fraction = 0.35
        self.radius_steps = 6
        self.radiuses_to_try = [1]
        self.ds_factor = 1

        self.correct_downsampling = False

        self.do_refinement_phase = 0

        self.return_sobel = 0

        self.albino_mode = False
        self.albino_threshold = 10.

        self.cache_sobel = True
        self.cached_sobel = None
        self.compute_sobel_avg = True  # for autofocus
        self.sobel_avg = None

        # Voting
        self.outlier_cutoff = 1.
        self.maxmin_consensus_votes = 1

        self.image_contribution = 1

        self.last_positions = []

        self.available_filters = [u'sepfir', u'spline', u'fft', u'convolve2d']

        self.result = None

        self.restrict_top = 0
        self.restrict_bottom = 123
        self.restrict_left = 0
        self.restrict_right = 164

    # analyze the image and return dictionary of features gleaned
    # from it
    # @clockit
    def analyze_image(self, image, guess=None, **kwargs):
        # print "fr"
        im_array = image
        # im_array = image.astype(double)
        im_array = im_array[::self.ds_factor, ::self.ds_factor]

        if guess != None:
            features = guess
        else:
            features = {'pupil_size': None, 'cr_size': None}

        if self.parameters_updated or self.backend.cached_shape \
            != im_array.shape:
            logging.debug('Recaching...')
            logging.debug('Target kPixels: %s' % self.target_kpixels)
            logging.debug('Max Radius Fraction: %s' % self.max_radius_fraction)
            logging.debug('Radius steps: %s' % self.radius_steps)
            im_pixels = image.shape[0] * image.shape[1]
            self.ds_factor = int(
                sqrt(im_pixels / int(self.target_kpixels * 1000)))
            if self.ds_factor <= 0:
                self.ds_factor = 1
            im_array = image[::self.ds_factor, ::self.ds_factor]

            self.backend.autotune(im_array)
            self.parameters_updated = 0

            self.radiuses_to_try = linspace(
                ceil(self.min_radius_fraction * im_array.shape[0]),
                ceil(self.max_radius_fraction * im_array.shape[0]),
                self.radius_steps)
            self.radiuses_to_try = unique(self.radiuses_to_try.astype(int))
            logging.debug('Radiuses to try: %s' % self.radiuses_to_try)
            logging.debug('Downsampling factor: %s' % self.ds_factor)

        ds = self.ds_factor

        S = self.backend.fast_radial_transform(im_array, self.radiuses_to_try,
                                               self.alpha)

        S[:, 0:self.restrict_left] = -1.
        S[:, self.restrict_right:] = -1.
        S[0:self.restrict_top, :] = -1.
        S[self.restrict_bottom:, :] = -1.

        if self.albino_mode:
            (pupil_coords, cr_coords) = self.find_albino_features(S, im_array)
        else:
            (pupil_coords, cr_coords) = self.backend.find_minmax(S)

        if pupil_coords == None:
            pupil_coords = array([0., 0.])

        if cr_coords == None:
            cr_coords = array([0., 0.])

        if self.correct_downsampling:
            features['pupil_position'] = array(
                [pupil_coords[0], pupil_coords[1]]) * ds
            features['cr_position'] = array([cr_coords[0], cr_coords[1]]) * ds
            features['dwnsmp_factor_coord'] = 1
        else:
            features['pupil_position'] = array(
                [pupil_coords[0], pupil_coords[1]])
            features['cr_position'] = array([cr_coords[0], cr_coords[1]])
            features['dwnsmp_factor_coord'] = ds

        features['transform'] = S
        features['im_array'] = im_array
        features['im_shape'] = im_array.shape

        features['restrict_top'] = self.restrict_top
        features['restrict_bottom'] = self.restrict_bottom
        features['restrict_left'] = self.restrict_left
        features['restrict_right'] = self.restrict_right

        if self.return_sobel:
            # this is very inefficient, and only for debugging
            (m, x, y) = self.backend.sobel3x3(im_array)
            features['sobel'] = m

        self.result = features

    def update_parameters(self):
        self.parameters_updated = 1

    def get_result(self):
        return self.result

    def find_albino_features(self, T, im):
        import scipy.ndimage as ndi

        binarized = zeros_like(T)
        binarized[T > self.albino_threshold] = True
        (labels, nlabels) = ndi.label(binarized)
        slices = ndi.find_objects(labels)

        intensities = []
        transform_means = []

        if len(slices) < 2:
            return (None, None)

        for s in slices:

            transform_means.append(mean(T[s]))
            intensities.append(mean(im[s]))

        sorted_transform_means = argsort(transform_means)
        candidate1 = sorted_transform_means[-1]
        candidate2 = sorted_transform_means[-2]

        c1_center = array(ndi.center_of_mass(im, labels, candidate1 + 1))
        c2_center = array(ndi.center_of_mass(im, labels, candidate2 + 1))

        if intensities[candidate1] > intensities[candidate2]:
            return (c2_center, c1_center)
        else:
            return (c1_center, c2_center)
Ejemplo n.º 4
0
class FastRadialFeatureFinder(EyeFeatureFinder):
    def __init__(self):

        self.backend = WovenBackend()
        #self.backend = OpenCLBackend()

        self.target_kpixels = 80.0  #8.0
        self.max_target_kpixels = 50.0
        self.min_target_kpixels = 1.0
        self.parameters_updated = 1

        self.alpha = 10.
        self.min_radius_fraction = 0.0226  #1./2000.
        self.max_radius_fraction = 0.0956  #1./8.
        self.min_fraction = 1. / 1000.
        self.max_fraction = 0.35
        self.radius_steps = 6
        self.radiuses_to_try = [1]
        self.ds_factor = 1

        self.correct_downsampling = False

        self.do_refinement_phase = 0

        self.shortcut_at_sobel = 0

        self.cache_sobel = True
        self.cached_sobel = None
        self.compute_sobel_avg = True  # for autofocus
        self.sobel_avg = None

        # Voting
        self.outlier_cutoff = 1.
        self.maxmin_consensus_votes = 1

        self.image_contribution = 1

        self.last_positions = []

        self.available_filters = [u"sepfir", u"spline", u"fft", u"convolve2d"]

        self.result = None

    # analyze the image and return dictionary of features gleaned
    # from it
    ##@clockit
    def analyze_image(self, image, guess=None, **kwargs):
        #print "fr"
        im_array = image
        #im_array = image.astype(double)
        im_array = im_array[::self.ds_factor, ::self.ds_factor]

        if (guess != None):
            features = guess
        else:
            features = {'pupil_size': None, 'cr_size': None}

        if (self.parameters_updated
                or self.backend.cached_shape != im_array.shape):
            print "Recaching..."
            print "Target kPixels: ", self.target_kpixels
            print "Max Radius Fraction: ", self.max_radius_fraction
            print "Radius steps: ", self.radius_steps
            im_pixels = image.shape[0] * image.shape[1]
            self.ds_factor = int(
                sqrt(im_pixels / int(self.target_kpixels * 1000)))
            if (self.ds_factor <= 0):
                self.ds_factor = 1
            im_array = image[::self.ds_factor, ::self.ds_factor]

            self.backend.autotune(im_array)
            self.parameters_updated = 0

            self.radiuses_to_try = linspace(
                ceil(self.min_radius_fraction * im_array.shape[0]),
                ceil(self.max_radius_fraction * im_array.shape[0]),
                self.radius_steps)
            self.radiuses_to_try = unique(self.radiuses_to_try.astype(int))
            print "Radiuses to try: ", self.radiuses_to_try
            print "Downsampling factor: ", self.ds_factor

        ds = self.ds_factor

        S = self.backend.fast_radial_transform(im_array, self.radiuses_to_try,
                                               self.alpha)
        (min_coords, max_coords) = self.backend.find_minmax(S)

        if (self.correct_downsampling):
            features['pupil_position'] = array([min_coords[0], min_coords[1]
                                                ]) * ds
            features['cr_position'] = array([max_coords[0], max_coords[1]
                                             ]) * ds
            features['dwnsmp_factor_coord'] = 1
        else:
            features['pupil_position'] = array([min_coords[0], min_coords[1]])
            features['cr_position'] = array([max_coords[0], max_coords[1]])
            features['dwnsmp_factor_coord'] = ds

        features['transform'] = S
        features['im_array'] = im_array
        features['im_shape'] = im_array.shape

        self.result = features

    def update_parameters(self):
        self.parameters_updated = 1

    def get_result(self):
        return self.result
Ejemplo n.º 5
0
class FastRadialFeatureFinder (EyeFeatureFinder):

    def __init__(self):

        self.backend = WovenBackend()
        #self.backend = OpenCLBackend()
                        
        self.target_kpixels = 80.0 #8.0
        self.max_target_kpixels = 50.0
        self.min_target_kpixels = 1.0
        self.parameters_updated = 1
        
        self.alpha = 10.
        self.min_radius_fraction = 0.0226 #1./2000.
        self.max_radius_fraction = 0.0956 #1./8.
        self.min_fraction = 1./1000.
        self.max_fraction = 0.35
        self.radius_steps = 6
        self.radiuses_to_try = [1]
        self.ds_factor = 1
        
        self.correct_downsampling = False
        
        self.do_refinement_phase = 0
        
        self.shortcut_at_sobel = 0
        
        self.cache_sobel = True
        self.cached_sobel = None
        self.compute_sobel_avg = True # for autofocus
        self.sobel_avg = None
        
        # Voting
        self.outlier_cutoff = 1.
        self.maxmin_consensus_votes = 1
        
        self.image_contribution = 1
        
        self.last_positions = []
        
        self.available_filters = [u"sepfir", u"spline", u"fft", u"convolve2d"]
        
        self.result = None
    
    # analyze the image and return dictionary of features gleaned
    # from it
    ##@clockit
    def analyze_image(self, image, guess = None, **kwargs):
        #print "fr"
        im_array = image
        #im_array = image.astype(double)
        im_array = im_array[::self.ds_factor, ::self.ds_factor]
        
        if(guess != None):
            features = guess
        else:
            features = {'pupil_size' : None,
                        'cr_size' : None }	
		
        if(self.parameters_updated or self.backend.cached_shape != im_array.shape):
            print "Recaching..."
            print "Target kPixels: ", self.target_kpixels
            print "Max Radius Fraction: ", self.max_radius_fraction
            print "Radius steps: ", self.radius_steps
            im_pixels = image.shape[0] * image.shape[1]
            self.ds_factor = int(sqrt(im_pixels / int(self.target_kpixels*1000)))
            if(self.ds_factor <= 0):
                self.ds_factor = 1
            im_array = image[::self.ds_factor, ::self.ds_factor]
            
            self.backend.autotune(im_array)
            self.parameters_updated = 0
            
            self.radiuses_to_try = linspace(ceil(self.min_radius_fraction*im_array.shape[0]), ceil(self.max_radius_fraction*im_array.shape[0]), self.radius_steps)
            self.radiuses_to_try = unique(self.radiuses_to_try.astype(int))
            print "Radiuses to try: ", self.radiuses_to_try
            print "Downsampling factor: ", self.ds_factor
			
        ds = self.ds_factor;
        
        S = self.backend.fast_radial_transform(im_array, self.radiuses_to_try, self.alpha)        
        (min_coords, max_coords) = self.backend.find_minmax(S)
        
        if(self.correct_downsampling):
            features['pupil_position'] = array([min_coords[0], min_coords[1]]) * ds
            features['cr_position'] = array([max_coords[0], max_coords[1]]) * ds 
            features['dwnsmp_factor_coord'] = 1           
        else:
            features['pupil_position'] = array([min_coords[0], min_coords[1]])
            features['cr_position'] = array([max_coords[0], max_coords[1]])      
            features['dwnsmp_factor_coord'] = ds      

        features['transform'] = S
        features['im_array'] = im_array
        features['im_shape'] = im_array.shape
        
        self.result = features
        
            
    def update_parameters(self):
        self.parameters_updated = 1
        
    def get_result(self):
        return self.result