Ejemplo n.º 1
0
    def test_mesh_gaussian_value(self):
        """Check reference values and empty cases for mesh_gaussian"""
        # Numerical values were not checked against an external reference
        # so they are only useful for detecting if the results have _changed_.

        self.assertEqual(
            Broadening.mesh_gaussian(sigma=5, points=[], center=1).shape,
            (0, ))

        zero_result = Broadening.mesh_gaussian(sigma=np.array([[5]]),
                                               points=np.array([
                                                   0,
                                               ]),
                                               center=np.array([[3]]))
        self.assertEqual(zero_result.shape, (1, 1))
        self.assertFalse(zero_result.any())

        assert_array_almost_equal(
            Broadening.mesh_gaussian(sigma=2,
                                     points=np.array([0, 1]),
                                     center=0), np.array([0.199471, 0.176033]))
        assert_array_almost_equal(
            Broadening.mesh_gaussian(sigma=np.array([[2], [2]]),
                                     points=np.array([0, 1, 2]),
                                     center=np.array([[0], [1]])),
            np.array([[0.199471, 0.176033, 0.120985],
                      [0.176033, 0.199471, 0.176033]]))
Ejemplo n.º 2
0
    def test_broadening_normalisation(self):
        """Check broadening implementations do not change overall intensity"""
        np.random.seed(0)

        # Use a strange bin width to catch bin-width-dependent behaviour
        bins = np.linspace(0, 5000, 2000)

        def sigma_func(frequencies):
            return 2 + frequencies * 1e-2

        n_peaks = 10
        frequencies = np.random.random(n_peaks) * 4000
        sigma = sigma_func(frequencies)
        s_dft = np.random.random(n_peaks) * 10

        pre_broadening_total = sum(s_dft)

        # Full Gaussian should reproduce null total
        for scheme in ('none', 'gaussian'):
            freq_points, spectrum = Broadening.broaden_spectrum(frequencies,
                                                                bins,
                                                                s_dft,
                                                                sigma,
                                                                scheme=scheme)
            self.assertAlmostEqual(
                sum(spectrum),
                pre_broadening_total,
            )

        # Normal scheme reproduces area as well as total;
        freq_points, full_spectrum = Broadening.broaden_spectrum(
            frequencies, bins, s_dft, sigma, scheme='normal')
        self.assertAlmostEqual(
            np.trapz(spectrum, x=freq_points),
            pre_broadening_total * (bins[1] - bins[0]),
        )
        self.assertAlmostEqual(sum(spectrum), pre_broadening_total)

        # truncated forms will be a little off but shouldn't be _too_ off
        for scheme in ('gaussian_truncated', 'normal_truncated'):

            freq_points, trunc_spectrum = Broadening.broaden_spectrum(
                frequencies, bins, s_dft, sigma, scheme)
            self.assertLess(
                abs(sum(full_spectrum) - sum(trunc_spectrum)) /
                sum(full_spectrum), 0.03)

        # Interpolated methods need histogram input and smooth sigma
        hist_spec, _ = np.histogram(frequencies, bins, weights=s_dft)
        hist_sigma = sigma_func(freq_points)
        freq_points, interp_spectrum = Broadening.broaden_spectrum(
            freq_points, bins, hist_spec, hist_sigma, scheme='interpolate')
        self.assertLess(
            abs(sum(interp_spectrum) - pre_broadening_total) /
            pre_broadening_total, 0.05)
Ejemplo n.º 3
0
    def test_gaussian(self):
        """Benchmark Gaussian against (slower) Scipy norm.pdf"""
        x = np.linspace(-10, 10, 101)
        diff = np.abs(
            spnorm.pdf(x) - Broadening.gaussian(sigma=1, points=x, center=0))

        self.assertLess(max(diff), 1e-8)

        sigma, offset = 1.5, 4
        diff = np.abs(
            spnorm.pdf((x - offset) / sigma) / (sigma) -
            Broadening.gaussian(sigma=sigma, points=x, center=offset))
        self.assertLess(max(diff), 1e-8)
Ejemplo n.º 4
0
    def test_broaden_spectrum_values(self):
        """Check broadening implementations give similar values"""

        # Use dense bins with a single peak for fair comparison
        npts = 1000
        bins = np.linspace(0, 100, npts + 1)
        freq_points = (bins[1:] + bins[:-1]) / 2
        sigma = freq_points * 0.1 + 1
        s_dft = np.zeros(npts)
        s_dft[npts // 2] = 2

        schemes = [
            'gaussian', 'gaussian_truncated', 'normal', 'normal_truncated',
            'interpolate'
        ]

        results = {}
        for scheme in schemes:
            _, results[scheme] = Broadening.broaden_spectrum(
                freq_points, bins, s_dft, sigma, scheme)

        for scheme in schemes:
            # Interpolate scheme is approximate so just check a couple of sig.fig.
            if scheme == 'interpolate':
                places = 3
            else:
                places = 6
            self.assertAlmostEqual(results[scheme][(npts // 2) + 20],
                                   0.01257,
                                   places=places)
Ejemplo n.º 5
0
    def test_normal_sum(self):
        """Check that normally-distributed kernel sums to unity"""
        # Note that unlike Gaussian kernel, this totals intensity 1 even with absurdly large bins

        for bin_width in 0.1, 0.35, 3.1, 5:
            bins = np.arange(-20, 20, bin_width)
            curve = Broadening.normal(sigma=0.4, bins=bins)

            self.assertAlmostEqual(sum(curve), 1)
Ejemplo n.º 6
0
    def test_out_of_bounds(self):
        """Check schemes allowing arbitrary placement can handle data beyond bins"""
        frequencies = np.array([2000.])
        bins = np.linspace(0, 100, 100)
        s_dft = np.array([1.])
        sigma = np.array([3.])

        schemes = [
            'none', 'gaussian', 'gaussian_truncated', 'normal',
            'normal_truncated'
        ]

        for scheme in schemes:
            Broadening.broaden_spectrum(frequencies,
                                        bins,
                                        s_dft,
                                        sigma,
                                        scheme=scheme)
Ejemplo n.º 7
0
    def test_mesh_gaussian_sum(self):
        """Check sum of mesh_gaussian is correctly adapted to bin width"""
        # Note that larger bin widths will not sum to 1 with this theoretical normalisation factor; this is a
        # consequence of directly evaluating the Gaussian function. For coarse bins, consider using the "normal" kernel
        # which does not have this error.
        for bin_width in 0.1, 0.35:
            points = np.arange(-20, 20, bin_width)
            curve = Broadening.mesh_gaussian(sigma=0.4, points=points)

            self.assertAlmostEqual(sum(curve), 1)