def calc_hubness(indices, K=[3, 5, 7, 11, 17], verbose=False, label=''):
    if verbose:
        plt.figure()
    h = np.zeros(len(K))
    for i in range(len(K)):
        h_ = hubness(indices, K[i])
        h[i] = h_[0]
        if verbose:
            #plt.subplot(1,len(K), i+1)
            plt.plot(smooth(h_[1], window_length=1))
    h_mean, h_std = np.mean(h), np.std(h)
    if verbose:
        plt.legend(['K={}: {:.2f}'.format(k, ind) for k, ind in zip(K, h)])
        plt.title('{} (Hubness = {:.2f}))'.format(label, h_mean))
        plt.xlabel('Nk')
        plt.ylabel('P(Nk)')
    return h_mean, h_std
    plt.figure(experiment_name + ' Correlation: ' + dset)
    plt_ = [None] * len(rating_metrics) * n_cells
    for i in range(n_cells):
        plt_[i] = plt.subplot(n_rows, n_cols, i + 1)
        #plt_[i].grid(which='major', axis='y')
    legend = []
    for n in run_names:
        legend += [n]
        legend += ['']
        legend += ['']

    for valid_epochs, idx_malig_pearson, idx_malig_kendall, idx_rating_pearson, idx_rating_kendall \
            in zip(Valid_epochs, Idx_malig_pearson, Idx_malig_kendall, Idx_rating_pearson, Idx_rating_kendall):

        # Malignancy Pearson Correlation
        q = plt_[2 * m + 0].plot(valid_epochs, smooth(idx_malig_pearson[0]))
        plt_[2 * m + 0].plot(valid_epochs,
                             smooth(idx_malig_pearson[0] +
                                    idx_malig_pearson[1]),
                             color=q[0].get_color(),
                             ls='--',
                             alpha=alpha)
        plt_[2 * m + 0].plot(valid_epochs,
                             smooth(idx_malig_pearson[0] -
                                    idx_malig_pearson[1]),
                             color=q[0].get_color(),
                             ls='--',
                             alpha=alpha)
        plt_[2 * m + 0].grid(which='major', axis='y')

        # Malignancy Kendall Correlation
        plt_[idx(1, 0)].plot(epochs, prec + prec_std, color=q[0].get_color(), ls='--', alpha=alpha)
        plt_[idx(1, 0)].plot(epochs, prec - prec_std, color=q[0].get_color(), ls='--', alpha=alpha)
        Axes.set_ylim(plt_[idx(0, 0)].axes, .75, .85)

        # Precision Index
        q = plt_[idx(2, 0)].plot(epochs, index, '-*')
        plt_[idx(2, 0)].plot(epochs, index + index_std, color=q[0].get_color(), ls='--', alpha=alpha)
        plt_[idx(2, 0)].plot(epochs, index - index_std, color=q[0].get_color(), ls='--', alpha=alpha)
        Axes.set_ylim(plt_[idx(0, 0)].axes, .75, .85)
        '''

        # Smoothed
        row = 0

        # Accuracy
        q = plt_[idx(0, row)].plot(epochs, smooth(acc), '-')
        plt_[idx(0, row)].plot(epochs,
                               smooth(acc + acc_std),
                               color=q[0].get_color(),
                               ls='--',
                               alpha=alpha)
        plt_[idx(0, row)].plot(epochs,
                               smooth(acc - acc_std),
                               color=q[0].get_color(),
                               ls='--',
                               alpha=alpha)
        Axes.set_ylim(plt_[idx(0, row)].axes, .6, .9)

        # Precision
        q = plt_[idx(1, row)].plot(epochs, smooth(prec), '-')
        plt_[idx(1, row)].plot(epochs,
Ejemplo n.º 4
0
        Idx_concentration += [idx_concentration]
        Idx_contrast += [idx_contrast]
        Idx_kummar += [idx_kummar]
        Idx_featCorr += [idx_featCorr]
        Idx_sampCorr += [idx_sampCorr]

# plot

for epochs, idx_hubness, idx_symmetry, idx_concentration, idx_contrast, idx_kummar, idx_featCorr, idx_sampCorr \
        in zip(Epochs, Idx_hubness, Idx_symmetry, Idx_concentration, Idx_contrast, Idx_kummar, Idx_featCorr, Idx_sampCorr):

    #   hubness
    next_plot = 0
    if 'Hubness' in indexes:
        q = p[M * m + next_plot].plot(epochs,
                                      smooth(idx_hubness[0]),
                                      marker='x')  #
        p[M * m + next_plot].plot(epochs,
                                  smooth(idx_hubness[0] + idx_hubness[1]),
                                  color=q[0].get_color(),
                                  ls='--',
                                  alpha=alpha)
        p[M * m + next_plot].plot(epochs,
                                  smooth(idx_hubness[0] - idx_hubness[1]),
                                  color=q[0].get_color(),
                                  ls='--',
                                  alpha=alpha)
        next_plot += 1

    #   symmetry
    if 'Symmetry' in indexes:
Ejemplo n.º 5
0
def dir_rating_correlate(run,
                         post,
                         epochs,
                         rating_norm='none',
                         clustered_rating_distance=True,
                         n_groups=5):
    pear_corr = [[] for i in range(n_groups)]
    kend_corr = [[] for i in range(n_groups)]
    plot_data_filename = './Plots/Data/rating_correlation_{}{}.p'.format(
        'dirR', run)
    try:
        print('SKIPING')
        assert False
        pear_corr, kend_corr = pickle.load(open(plot_data_filename, 'br'))
        print("Loaded results for {}".format(run))
    except:
        print("Evaluating Rating Correlation for {}".format(run))
        for c, run_config in enumerate(
            [run + 'c{}'.format(config) for config in range(n_groups)]):
            PredFile = FileManager.Pred(type='rating', pre='dirR')
            Reg = RatingCorrelator(PredFile(run=run_config, dset=post),
                                   multi_epoch=True)
            for e in epochs:
                Reg.evaluate_embed_distance_matrix(
                    method='euclidean',
                    epoch=e,
                    round=(rating_norm == 'Round'))
                Reg.evaluate_rating_space(norm=rating_norm)
                Reg.evaluate_rating_distance_matrix(
                    method='euclidean',
                    clustered_rating_distance=clustered_rating_distance)

                Reg.linear_regression()
                # Reg.scatter('embed', 'rating', xMethod="euclidean", yMethod='euclidean', sub=False)
                p, s, k = Reg.correlate_retrieval(
                    'embed',
                    'rating',
                    round=(rating_norm == 'Round'),
                    verbose=False)
                pear_corr[c].append(p)
                kend_corr[c].append(k)

            pear_corr[c] = np.array(pear_corr[c])
            kend_corr[c] = np.array(kend_corr[c])

        pear_corr = np.mean(pear_corr, axis=0)
        kend_corr = np.mean(kend_corr, axis=0)
        print('NO DUMP')
        #pickle.dump((pear_corr, kend_corr), open(plot_data_filename, 'bw'))

    pear_corr = smooth(pear_corr[:, 0]), smooth(pear_corr[:, 1])
    kend_corr = smooth(kend_corr[:, 0]), smooth(kend_corr[:, 1])
    epochs = np.array(epochs)

    plt.figure('Rating2Rating:' + run + '-' + post)
    q = plt.plot(epochs, pear_corr[0])
    plt.plot(epochs,
             pear_corr[0] + pear_corr[1],
             color=q[0].get_color(),
             ls='--',
             alpha=alpha)
    plt.plot(epochs,
             pear_corr[0] - pear_corr[1],
             color=q[0].get_color(),
             ls='--',
             alpha=alpha)

    q = plt.plot(epochs, kend_corr[0])
    plt.plot(epochs,
             kend_corr[0] + kend_corr[1],
             color=q[0].get_color(),
             ls='--',
             alpha=alpha)
    plt.plot(epochs,
             kend_corr[0] - kend_corr[1],
             color=q[0].get_color(),
             ls='--',
             alpha=alpha)

    plt.grid(which='major', axis='y')
    plt.title('rating_' + run + '_' + post)
    plt.xlabel('epochs')
    plt.ylabel('correlation')
    plt.legend(['pearson', '', '', 'kendall', '', ''])
Ejemplo n.º 6
0
def dir_size_rmse(run,
                  post,
                  epochs,
                  net_type,
                  dist='RMSE',
                  weighted=False,
                  n_groups=5):

    plot_data_filename = './Plots/Data/size{}_{}{}.p'.format(
        dist, net_type, run)
    try:
        assert False
        R = pickle.load(open(plot_data_filename, 'br'))
        print("Loaded results for {}".format(run))
    except:
        print("Evaluating Size RMSE for {}".format(run))
        PredFile = FileManager.Pred(type='size', pre=net_type)
        R = np.zeros([len(epochs), n_groups])

        for c, run_config in enumerate(
            [run + 'c{}'.format(config) for config in range(n_groups)]):
            predict, valid_epochs, images, meta_data, classes, labels, masks = PredFile.load(
                run=run_config, dset=post)
            labels = np.array(labels)
            for i, e in enumerate(epochs):
                print(" Epoch {}:".format(e))
                try:
                    idx = int(np.argwhere(valid_epochs == e))
                except:
                    print('skip epoch {}'.format(e))
                    continue
                pred = predict[idx]
                '''
                W = np.ones(labels.shape[0])
                if weighted:
                    assert False
                    w = np.histogram(labels[:, r], bins=np.array(range(64))+0.5)[0]
                    w = 1 - w / np.sum(w)
                    pred_w = np.minimum(np.maximum(pred[:, r], 1.0), max_val)
                    W = w[np.round(pred_w - 1).astype('int')]
                if dist=='RMSE':
                    err = W.dot((pred - labels)**2)
                    err = np.sqrt(err/np.sum(W))
                elif dist=='ABS':
                    err = W.dot(np.abs(pred - labels)) / np.sum(W)
                else:
                    print('{} unrecognized distance'.format(dist))
                    assert False
                '''
                rmse = np.sqrt(np.mean(np.sum((pred - labels)**2, axis=1)))
                R[i, c] = rmse
        R = np.mean(R, axis=1)
        pickle.dump(R, open(plot_data_filename, 'bw'))

    # smooth
    R = smooth(R)

    plt.figure(dist + ' ' + net_type + run + '-' + post)
    plt.title('Size ' + dist)
    plt.plot(epochs, R)
    #plt.legend(rating_property+['Overall'])
    plt.grid(True, axis='y')

    return R
Ejemplo n.º 7
0
def dir_rating_params_correlate(run,
                                post,
                                epochs,
                                net_type,
                                rating_norm='none',
                                configurations=list(range(5)),
                                USE_CACHE=True,
                                DUMP=True):

    reference = [0.7567, 0.5945, 0.7394, 0.5777, 0.6155, 0.7445,
                 0.6481]  # 0, 0,
    rating_property = [
        'Subtlety', 'Sphericity', 'Margin', 'Lobulation', 'Spiculation',
        'Texture', 'Malignancy'
    ]  # 'Internalstructure', 'Calcification',
    mask = [True, False, False, True, True, True, True, True, True]

    pear_corr = [[] for i in configurations]
    plot_data_filename = './Plots/Data/rating_params_correlation_{}{}.p'.format(
        net_type, run)
    try:
        if USE_CACHE is False:
            print('SKIPPING')
            assert False
        pear_corr = pickle.load(open(plot_data_filename, 'br'))
        print("Loaded results for {}".format(run))
    except:
        print("Evaluating Rating Correlation for {}".format(run))
        for c, run_config in enumerate(
            [run + 'c{}'.format(config) for config in configurations]):
            PredFile = FileManager.Pred(type='rating', pre=net_type)
            Reg = RatingCorrelator(PredFile(run=run_config, dset=post),
                                   multi_epoch=True,
                                   conf=c)
            Reg.evaluate_rating_space(norm=rating_norm)
            #valid_epochs = []
            for e in epochs:
                p = Reg.correlate_to_ratings(epoch=e,
                                             round=(rating_norm == 'Round'))
                if not np.all(np.isfinite(p[mask])):
                    print('nan at: conf={}, epoch={}'.format(c, e))
                pear_corr[c].append(p[mask])
                #valid_epochs.append(e)

            pear_corr[c] = np.array(pear_corr[c])

        pear_corr = np.mean(pear_corr, axis=0)
        if DUMP:
            pickle.dump(pear_corr, open(plot_data_filename, 'bw'))
        else:
            print('NO DUMP')

    for i, e in enumerate(epochs):
        print("=" * 20)
        print(" Epoch {}:".format(e))
        print("-" * 20)
        for p, property in enumerate(rating_property):
            print("\t{}: \t{:.2f}".format(property, pear_corr[i, p]))
        #print("\t" + ("-" * 10))
        #print("\toverall: \t{:.2f}".format(R[i, 9]))

    for p in range(pear_corr.shape[1]):
        pear_corr[:, p] = smooth(pear_corr[:, p], window_length=5, polyorder=2)
    epochs = np.array(epochs)

    plt.figure('RatingParams2Rating:' + run + '-' + post)
    q = plt.plot(epochs, pear_corr, linewidth=2.5)
    for line, ref in zip(q, reference):
        plt.plot(epochs,
                 ref * np.ones_like(epochs),
                 color=line.get_color(),
                 ls='--',
                 linewidth=4,
                 alpha=0.6)

    plt.grid(which='major', axis='y')
    plt.title('rating_' + run + '_' + post)
    plt.xlabel('epochs')
    plt.ylabel('correlation')
    plt.legend(rating_property)
Ejemplo n.º 8
0
def dir_rating_rmse(run,
                    post,
                    epochs,
                    net_type,
                    dist='RMSE',
                    weighted=False,
                    configurations=list(range(5)),
                    USE_CACHE=True,
                    DUMP=True):
    #images, predict, meta_data, labels, masks = pred_loader.load(run, epochs[-1], post)
    rating_property = [
        'Subtlety', 'Internalstructure', 'Calcification', 'Sphericity',
        'Margin', 'Lobulation', 'Spiculation', 'Texture', 'Malignancy'
    ]

    plot_data_filename = './Plots/Data/{}_{}{}.p'.format(dist, net_type, run)
    try:
        if USE_CACHE is False:
            print("skipping...")
            assert False
        R = pickle.load(open(plot_data_filename, 'br'))
        print("Loaded results for {}".format(run))
    except:
        print("Evaluating RMSE for {}".format(run))
        PredFile = FileManager.Pred(type='rating', pre=net_type)
        R = np.zeros([len(epochs), 10, len(configurations)])

        for c, run_config in enumerate(
            [run + 'c{}'.format(config) for config in configurations]):
            predict, valid_epochs, images, meta_data, classes, labels, masks, conf, rating_weights, z = PredFile.load(
                run=run_config, dset=post)
            labels = np.array([np.mean(l, axis=0) for l in labels])
            for i, e in enumerate(epochs):
                #print("=" * 20)
                #print(" Epoch {}:".format(e))
                #print("-" * 20)
                try:
                    idx = int(np.argwhere(valid_epochs == e))
                except:
                    print('skip epoch {}'.format(e))
                    continue
                pred = predict[idx]

                for r, max_val in zip(range(9), [5, 5, 6, 5, 5, 5, 5, 5, 5]):
                    #print("{}:".format(rating_property[r]))
                    W = np.ones(labels.shape[0])
                    if weighted:
                        w = np.histogram(labels[:, r],
                                         bins=np.array(range(max_val + 1)) +
                                         0.5)[0]
                        #print("\tcounts - {}".format(w))
                        w = 1 - w / np.sum(w)
                        w /= (len(w) - 1)
                        assert np.abs(w.sum() - 1) < 1e-6
                        #print("\tweighted by {}".format(w))
                        #pred_w = np.minimum(np.maximum(pred[:, r], 1.0), max_val)
                        W = w[np.round(labels[:, r] - 1).astype('int')]
                    if dist == 'RMSE':
                        err = W.dot((pred[:, r] - labels[:, r])**2)
                        err = np.sqrt(err / np.sum(W))
                    elif dist == 'ABS':
                        err = W.dot(
                            np.abs(pred[:, r] - labels[:, r])) / np.sum(W)
                    else:
                        print('{} unrecognized distance'.format(dist))
                        assert False
                    #print("rmse: \t{:.2f}".format(err))
                    R[i, r, c] = err
                rmse = np.sqrt(np.mean(np.sum((pred - labels)**2, axis=1)))
                #print("=" * 20)
                #print("overall: \t{:.2f}".format(rmse))
                R[i, 9, c] = rmse
        R = np.mean(R, axis=2)
        for i, e in enumerate(epochs):
            print("=" * 20)
            print(" Epoch {}:".format(e))
            print("-" * 20)
            for p, property in enumerate(rating_property):
                print("\t{}: \t{:.2f}".format(property, R[i, p]))
            print("\t" + ("-" * 10))
            print("\toverall: \t{:.2f}".format(R[i, 9]))

        if DUMP:
            pickle.dump(R, open(plot_data_filename, 'bw'))
        else:
            print("No Dump")

    # smooth
    for r in range(9):
        R[:, r] = smooth(R[:, r])
    plt.figure(dist + ' ' + run + '-' + post)
    plt.title('Rating ' + dist)
    plt.plot(epochs, R)
    plt.legend(rating_property + ['Overall'])
    plt.grid(True, axis='y')

    return R
Ejemplo n.º 9
0
        Idx_symmetry += [idx_symmetry]
        Idx_concentration += [idx_concentration]
        Idx_contrast += [idx_contrast]
        Idx_kummar += [idx_kummar]
        Idx_featCorr += [idx_featCorr]
        Idx_sampCorr += [idx_sampCorr]

# plot

for epochs, idx_hubness, idx_symmetry, idx_concentration, idx_contrast, idx_kummar, idx_featCorr, idx_sampCorr \
        in zip(Epochs, Idx_hubness, Idx_symmetry, Idx_concentration, Idx_contrast, Idx_kummar, Idx_featCorr, Idx_sampCorr):

        #   hubness
        next_plot = 0
        if 'Hubness' in indexes:
            q = p[M * m + next_plot].plot(epochs, smooth(idx_hubness[0]))
            p[M * m + next_plot].plot(epochs, smooth(idx_hubness[0] + idx_hubness[1]), color=q[0].get_color(), ls='--', alpha=alpha)
            p[M * m + next_plot].plot(epochs, smooth(idx_hubness[0] - idx_hubness[1]), color=q[0].get_color(), ls='--', alpha=alpha)
            next_plot += 1

        #   symmetry
        if 'Symmetry' in indexes:
            q = p[M * m + next_plot].plot(epochs, smooth(idx_symmetry[0]))
            p[M * m + next_plot].plot(epochs, smooth(idx_symmetry[0] + idx_symmetry[1]), color=q[0].get_color(), ls='--', alpha=alpha)
            p[M * m + next_plot].plot(epochs, smooth(idx_symmetry[0] - idx_symmetry[1]), color=q[0].get_color(), ls='--', alpha=alpha)
            next_plot += 1

        #   contrast
        if 'Contrast' in indexes:
            q = p[M * m + next_plot].plot(epochs, smooth(idx_contrast[0]))
            p[M * m + next_plot].plot(epochs, smooth(idx_contrast[0] + idx_contrast[1]), color=q[0].get_color(), ls='--', alpha=alpha)