Ejemplo n.º 1
0
def predict(args, model, tokenizer, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)

    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)

    results = []
    output_submit_file = os.path.join(pred_output_dir, prefix,
                                      "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
        logits = outputs[0]
        preds = logits.detach().cpu().numpy()
        preds = np.argmax(preds, axis=2).tolist()
        preds = preds[0][1:-1]  # [CLS]XXXX[SEP]
        tags = [args.id2label[x] for x in preds]
        label_entities = get_entities(preds, args.id2label, args.markup)
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join(tags)
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    logger.info("\n")
    with open(output_submit_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
Ejemplo n.º 2
0
def evaluate(args, model, tokenizer, prefix=""):
    metric = SpanEntityScore(args.id2label)
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)
    eval_features = load_and_cache_examples(args, args.task_name, tokenizer, data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_features))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    pbar = ProgressBar(n_total=len(eval_features), desc="Evaluating")
    for step, f in enumerate(eval_features):
        input_lens = f.input_len
        input_ids = torch.tensor([f.input_ids[:input_lens]], dtype=torch.long).to(args.device)
        input_mask = torch.tensor([f.input_mask[:input_lens]], dtype=torch.long).to(args.device)
        segment_ids = torch.tensor([f.segment_ids[:input_lens]], dtype=torch.long).to(args.device)
        start_ids = torch.tensor([f.start_ids[:input_lens]], dtype=torch.long).to(args.device)
        end_ids = torch.tensor([f.end_ids[:input_lens]], dtype=torch.long).to(args.device)
        subjects = f.subjects
        model.eval()
        with torch.no_grad():
            inputs = {"input_ids": input_ids, "attention_mask": input_mask,
                      "start_positions": start_ids, "end_positions": end_ids}
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (segment_ids if args.model_type in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
        tmp_eval_loss, start_logits, end_logits = outputs[:3]
        R = bert_extract_item(start_logits, end_logits)
        T = subjects
        metric.update(true_subject=T, pred_subject=R)
        if args.n_gpu > 1:
            tmp_eval_loss = tmp_eval_loss.mean()  # mean() to average on multi-gpu parallel evaluating
        eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        pbar(step)
    logger.info("\n")
    eval_loss = eval_loss / nb_eval_steps
    eval_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in eval_info.items()}
    results['loss'] = eval_loss
    logger.info("***** Eval results %s *****", prefix)
    info = "-".join([f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([f' {key}: {value:.4f} ' for key, value in entity_info[key].items()])
        logger.info(info)
    return results
Ejemplo n.º 3
0
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    bert_param_optimizer = list(model.bert.named_parameters())
    crf_param_optimizer = list(model.crf.named_parameters())
    linear_param_optimizer = list(model.classifier.named_parameters())
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in bert_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in bert_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in crf_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params':
        [p for n, p in crf_param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }]
    args.warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                if args.local_rank in [
                        -1, 0
                ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    print(" ")
                    if args.local_rank == -1:
                        # Only evaluate when single GPU otherwise metrics may not average well
                        evaluate(args, model, tokenizer)
                if args.local_rank in [
                        -1, 0
                ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(
                        args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args,
                               os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)
                    tokenizer.save_vocabulary(output_dir)
                    torch.save(optimizer.state_dict(),
                               os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(),
                               os.path.join(output_dir, "scheduler.pt"))
                    logger.info("Saving optimizer and scheduler states to %s",
                                output_dir)
        logger.info("\n")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
Ejemplo n.º 4
0
def predict(args, model, tokenizer, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)
    results = []
    output_predict_file = os.path.join(pred_output_dir, prefix,
                                       "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")

    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None,
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            logits = outputs[0]
            tags = model.crf.decode(logits, inputs['attention_mask'])
            tags = tags.squeeze(0).cpu().numpy().tolist()
        preds = tags[0][1:-1]  # [CLS]XXXX[SEP]
        label_entities = get_entities(preds, args.id2label, args.markup)
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join([args.id2label[x] for x in preds])
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    logger.info("\n")
    with open(output_predict_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
    if args.task_name == 'cluener':
        output_submit_file = os.path.join(pred_output_dir, prefix,
                                          "test_submit.json")
        test_text = []
        with open(os.path.join(args.data_dir, "test.json"), 'r') as fr:
            for line in fr:
                test_text.append(json.loads(line))
        test_submit = []
        for x, y in zip(test_text, results):
            json_d = {}
            json_d['id'] = x['id']
            json_d['label'] = {}
            entities = y['entities']
            words = list(x['text'])
            if len(entities) != 0:
                for subject in entities:
                    tag = subject[0]
                    start = subject[1]
                    end = subject[2]
                    word = "".join(words[start:end + 1])
                    if tag in json_d['label']:
                        if word in json_d['label'][tag]:
                            json_d['label'][tag][word].append([start, end])
                        else:
                            json_d['label'][tag][word] = [[start, end]]
                    else:
                        json_d['label'][tag] = {}
                        json_d['label'][tag][word] = [[start, end]]
            test_submit.append(json_d)
        json_to_text(output_submit_file, test_submit)
Ejemplo n.º 5
0
def evaluate(args, model, tokenizer, prefix=""):
    metric = SeqEntityScore(args.id2label, markup=args.markup)
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)
    eval_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(
        eval_dataset) if args.local_rank == -1 else DistributedSampler(
            eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(eval_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            tags = model.crf.decode(logits, inputs['attention_mask'])
        if args.n_gpu > 1:
            tmp_eval_loss = tmp_eval_loss.mean(
            )  # mean() to average on multi-gpu parallel evaluating
        eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        out_label_ids = inputs['labels'].cpu().numpy().tolist()
        input_lens = inputs['input_lens'].cpu().numpy().tolist()
        tags = tags.squeeze(0).cpu().numpy().tolist()
        for i, label in enumerate(out_label_ids):
            temp_1 = []
            temp_2 = []
            for j, m in enumerate(label):
                if j == 0:
                    continue
                elif j == input_lens[i] - 1:
                    metric.update(pred_paths=[temp_2], label_paths=[temp_1])
                    break
                else:
                    temp_1.append(args.id2label[out_label_ids[i][j]])
                    temp_2.append(args.id2label[tags[i][j]])
        pbar(step)
    logger.info("\n")
    eval_loss = eval_loss / nb_eval_steps
    eval_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in eval_info.items()}
    results['loss'] = eval_loss
    logger.info("***** Eval results %s *****", prefix)
    info = "-".join(
        [f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([
            f' {key}: {value:.4f} ' for key, value in entity_info[key].items()
        ])
        logger.info(info)
    return results