Ejemplo n.º 1
0
    def test_best_pos_search_recursion(self):
        schedules = [[t1] * 100 + [t2] * 100 + [t3] * 100]

        expectations = [(
            0, 300, 120
        )  # 120 seems to be the result returned by the code and appears to be correct, but I'm not convinced...
                        ]

        for i, schedule in enumerate(schedules):
            a = Agent(parameters={
                "name": "1",
                "skill": 0.95,
                "task_time": 1,
                "move_speed": 1
            })

            a.schedule = schedule

            p_i = a.best_pos_search(tI, range(len(a.schedule) + 1))
            p_j = a.best_pos_search(tJ, range(len(a.schedule) + 1))
            p_k = a.best_pos_search(tK, range(len(a.schedule) + 1))

            p_ijk = p_i[0], p_j[0], p_k[0]
            #print(p_ijk)
            assert p_ijk == expectations[i], "Expected {} but got {}".format(
                expectations[i], p_ijk)
Ejemplo n.º 2
0
def main():
    agents, tasks = generate_painter(X, Y, 3)

    # We give back m tasks in a giveback phase, and each iteration we assign one task,
    # so for m agents we should have a giveback probability < 1/m
    auctioneer = Auctioneer(agents, tasks, 0.25)  #1 / ( * len(agents)))

    schedule = auctioneer.optimize_schedule()

    Agent.print_schedule(X, Y, auctioneer, schedule)
Ejemplo n.º 3
0
    def test_worst_task_idx(self):
        a = Agent(parameters={
            "name": "1",
            "skill": 0.95,
            "task_time": 1,
            "move_speed": 1
        })

        a.schedule = [t1] * 10 + [tJ] + [t1] * 10

        wt = a.worst_task_idx()

        assert wt == 10, "Should have been {} but was {}".format(10, wt)
Ejemplo n.º 4
0
def main():
    agents, tasks = generate_painter(X, Y, 3)

    # nFeas = The number of feasible 1-moves
    # Given a schedule, we can move tasks equal to the number of agents.
    # Using the result by Osman, we set alpha = n * Nfeas, gamma = n
    alpha = math.factorial(X * Y)
    # The number of iterations is n

    annealer = Annealer(agents, tasks, 2500, 100, 0.1, 1)

    schedule = annealer.optimize_schedule()

    Agent.print_schedule(X, Y, annealer, schedule)
Ejemplo n.º 5
0
    def test_best_pos_search_base_case(self):
        schedules = [[], [tX], [t1, t2, t3]]

        expectations = [(0, 0, 0), (1, 1, 1), (0, 3, 1)]

        for i, schedule in enumerate(schedules):
            a = Agent(parameters={
                "name": "1",
                "skill": 0.95,
                "task_time": 1,
                "move_speed": 1
            })

            a.schedule = schedule

            p_i = a.best_pos_search(tI, range(len(a.schedule) + 1))
            p_j = a.best_pos_search(tJ, range(len(a.schedule) + 1))
            p_k = a.best_pos_search(tK, range(len(a.schedule) + 1))

            p_ijk = p_i[0], p_j[0], p_k[0]
            assert p_ijk == expectations[i], "Expected {} but got {}".format(
                expectations[i], p_ijk)
def generate_painter(X, Y, num_agents):
    agents = []
    skill_diff = 1.0 / (num_agents + 1)
    time_diff = 1.0 / (2 * num_agents + 1)
    for i in range(num_agents):
        agents += [
            Agent(
                parameters={
                    "name": str(i),
                    "skill": 1.0 - (i * skill_diff),
                    "task_time": 1.0 - (i * time_diff),
                    "move_speed": (i + 1)
                })
        ]
        #print(agents[-1])
    total = 0
    tasks = []

    half_diagonal = ((X**2 + Y**2)**0.5) / 2
    for i in range(X):
        for j in range(Y):
            # p = (X^2 + Y^2) / 4 - euclidean distance from center to (i, j)
            # = ( (i - (X/2))^2 + (j - (X/2)^2) ^ 0.5
            center_distance = ((i - X / 2)**2 + (j - Y / 2)**2)**0.5
            p = half_diagonal - center_distance
            total += p
            t = Task(
                parameters={
                    "name": "({},{})".format(i, j),
                    "i": i,
                    "j": j,
                    "chosen_probability": p
                })
            tasks += [t]

    for task in tasks:
        task.parameters["chosen_probability"] /= total

    #for i in range(X):
    #    for j in range(Y):
    #        print(round(tasks[i * Y + j].chosen_probability(), 2), end=" ")
    #    print("\n")

    return agents, tasks


# print(generate_painter(5, 5, 3))