def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.linear_model import Perceptron clf = Perceptron(max_iter=50, tol=1e-3, random_state=1) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.neighbors import KNeighborsClassifier clf = KNeighborsClassifier(n_neighbors=10) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.naive_bayes import BernoulliNB, MultinomialNB clf = BernoulliNB(alpha=.01) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.linear_model import RidgeClassifier clf = RidgeClassifier(tol=1e-2, solver="sag", random_state=1) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.neighbors import NearestCentroid clf = NearestCentroid() return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=event_sel) # X_train, y_train = preprocess(df, event_sel=[31, 78]) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42, 55, 11]) X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) from lightgbm import LGBMClassifier clf = LGBMClassifier(verbose=1, random_state=1, silent=0, n_estimators=400) return benchmark(clf, X_train.astype(float), y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) X_train, y_train = preprocess(df, event_sel=event_sel) from sklearn.linear_model import SGDClassifier clf = SGDClassifier(alpha=.0001, max_iter=50, tol=1e-3, penalty='l2', random_state=1) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() X_train, y_train = preprocess(df, event_sel=event_sel) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42, 55, 11]) # X_train, y_train = preprocess(df, event_sel=[62, 63, 60]) from sklearn.svm import LinearSVC clf = LinearSVC(loss='squared_hinge', penalty='l2', dual=False, tol=1e-3, verbose=0, random_state=1) return benchmark(clf, X_train, y_train)
def main(event_sel=None): df = read_train() # X_train, y_train = preprocess(df, event_sel=event_sel) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42]) # X_train, y_train = preprocess(df, event_sel=[71, 62, 42, 55, 11]) X_train, y_train = preprocess(df, event_sel=[62, 63, 60], ngrams=(2,4)) print('Extracting best features by a chi-squared test') from sklearn.feature_selection import SelectKBest, chi2 ch2 = SelectKBest(chi2, k=12000) X_train = ch2.fit_transform(X_train, y_train) print('Extracting done, {}'.format(X_train.shape)) from sklearn.svm import LinearSVC clf = LinearSVC(loss='squared_hinge', penalty='l2', dual=False, tol=1e-3, verbose=0, random_state=1) return benchmark(clf, X_train, y_train)