Ejemplo n.º 1
0
def bubbleSortSpec1():
    print('Empty list')
    A0 = list()
    A0_result = bubbleSort(A0)
    assert (not bool(A0_result)), "Empty list should return empty list"

    print('\n')
    print('A1 = [5,2,4,6,1,3]')
    A1 = [5, 2, 4, 6, 1, 3]
    A1_result = bubbleSort(A1)
    A1_expected = [1, 2, 3, 4, 5, 6]
    assert (A1_result == A1_expected), "A1"

    print('\n')
    print('A2 = [2,1]')
    A2 = [2, 1]
    A2_result = bubbleSort(A2)
    A2_expected = [1, 2]
    assert (A2_result == A2_expected), "A2"

    print('\n')
    print('A3 = [0,1,2,3,4,5,6,7]')
    A3 = [0, 1, 2, 3, 4, 5, 6, 7]
    A3_result = bubbleSort(A3)
    A3_expected = [0, 1, 2, 3, 4, 5, 6, 7]
    assert (A3_result == A3_expected), "A3"

    print('\n')
    print('A4 = [2]')
    A4 = [2]
    A4_result = bubbleSort(A4)
    A4_expected = [2]
    assert (A4_result == A4_expected), "A3"
 def test(self):
     case_a = ['k', 'e', 'p', 'w', 'a', 'n']
     case_b = [5, 7, 8, 1, 90, 12, 0]
     bubbleSort(case_a)
     bubbleSort(case_b)
     self.assertTrue(['a', 'e', 'k', 'n', 'p', 'w'])
     self.assertTrue([0, 1, 5, 7, 8, 12, 90])
Ejemplo n.º 3
0
def StartAlgorithm():
    global data

    scale = speedScale.get()
    if not data: return

    if algMenu.get() == 'Quick Sort':
        quick_sort(
            data,
            0,
            len(data) - 1,
            drawData,
            scale,
        )

    elif algMenu.get() == 'Bubble Sort':
        bubbleSort(data, drawData, scale)
    elif algMenu.get() == 'Selection Sort':
        selectionSort(data, drawData, scale)
    elif algMenu.get() == 'Merge Sort':
        mergeSort(data, drawData, scale)
    elif algMenu.get() == 'Insertion Sort':
        insertionSort(data, drawData, scale)

    drawData(data, ['green' for x in range(len(data))])
Ejemplo n.º 4
0
def StartAlgorithm():
    global data
    if not data:
        return

    if algo_menu.get() == 'Quick Sort':
        quickSort(data, 0, len(data) - 1, drawData, speedscale.get())

    elif algo_menu.get() == "Bubble Sort":
        bubbleSort(data, drawData, speedscale.get())
Ejemplo n.º 5
0
def sampleMedianSelect(list, left, right, m):
    if m >= len(list[left:right + 1]):
        #print("m>len(list)->decreasing m")
        m = len(list[left:right + 1])
    S = random.sample(list[left:right + 1], m)
    if m <= 20:
        bubbleSort(S)
    else:
        mergeSort(S)
    return S[ceil(len(S) / 2)]
def startAlgo():
    global data
    if Menu.get()=='Bubble sort':
        bubbleSort(data,drawData,speed_scale.get())
    elif Menu.get()=='Merge sort':
        mergeSort(data, drawData, speed_scale.get())
    elif Menu.get()=='Insertion sort':
        insertionSort(data, drawData, speed_scale.get())
    elif Menu.get()=='Selection sort':
        selectionSort(data, drawData, speed_scale.get())
    elif Menu.get()=='Quick sort':
        quicksort(data,0,len(data)-1, drawData, speed_scale.get())
        drawData(data,['green' for x in range(len(data))])
def calcularTiempoAlgoritmos(arreglo, tamanio,archivo):
    tiempos=[]
    #Tiempo RadixSort
    arreglo = generarArreglo(arreglo,tamanio)
    inicio = time()
    ordenadoRadix = radixSort(arreglo.copy(), 10)
    final = time()
    tiempos.append(final-inicio)

    #Tiempo QuickSort
    aux = arreglo.copy()
    inicio = time()
    quickSort(aux)
    final = time()
    tiempos.append(final-inicio)


    # Tiempo bubbleSort
    aux2 = arreglo.copy()
    inicio = time()
    bubbleSort(aux2)
    final = time()
    tiempos.append(final-inicio)


    #Tiempo shellSort
    aux3 = arreglo.copy()
    inicio = time()
    shellSort(aux3)
    final = time()
    tiempos.append(final-inicio)
    

    #Tiempo heapsort
    aux4 = arreglo.copy()
    inicio = time()
    heapsort(aux4)
    final = time()
    tiempos.append(final-inicio)
    
    
    archivo.write(str(tamanio))
    for element in tiempos:
        linea+=","+str(element*1000) #para que quede en milisegundos
    archivo.write("\n")
Ejemplo n.º 8
0
def sampleMedianSelect(list, left, right, m):
    if m >= len(list[left:right + 1]):
        print(
            "m>len(list)->decreasing m"
        )  # il caso in cui m sia più grande dell'array viene gestito portandolo
        m = len(
            list[left:right + 1]
        )  # alla minima grandezza accettabile affinche l'algoritmo funzioni
        # cosi in un caso pratico in cui verrebbe utilizzato in qualche applicazione
    S = random.sample(
        list[left:right + 1], m
    )  # in cui m è scelto a caso l'algoritmo non si ferma,al massimo rallenta un po'
    if m <= 20:  # oppure potrebbe anche non accadere mai con opportuni controlli a monte
        bubbleSort(
            S
        )  # nella scelta di m da parte dell'utente o dalla funzione chiamante
        #inserctionSort(S)
        #selectionSort(S)
    else:
        #S.sort()
        #mergeSort(S)
        #quickSort(S)
        heapSort(S)
    return S[ceil(len(S) / 2)]