Ejemplo n.º 1
0
def example_fluid():

    f = box_image(
        core.StructuredGrid((256, 256), spacing=[0.05, 0.05], device=device))
    d = box_image(core.StructuredGrid((256, 256),
                                      spacing=[0.05, 0.05],
                                      device=device),
                  break_width=46,
                  val=100.0)

    f = so.Gaussian.Create(channels=1,
                           kernel_size=5,
                           sigma=2,
                           dim=2,
                           device=device)(f)
    grads = so.Gradient.Create(dim=2, device=device)(f) * 100

    fluid_kernel = so.FluidKernel.Create(f, device=device)

    # Flow the gradients

    # Compute the gradients of the x
    x = core.StructuredGrid.FromGrid(f,
                                     tensor=grads[1].unsqueeze(0),
                                     channels=1)
    x_grads = so.Gradient.Create(dim=2, device=device)(grads[1])
Ejemplo n.º 2
0
    def _create_grid(src_surface, src_excess, grid_size, grid_device):
        grid_size = torch.tensor(grid_size,
                                 device=device,
                                 dtype=tar_surface.vertices.dtype)
        extent_verts = src_surface.vertices.clone()

        for surface in src_excess:
            extent_verts = torch.cat([extent_verts, surface.vertices], 0)

        vert_min = extent_verts.min(0).values
        vert_max = extent_verts.max(0).values

        # Expand beyond the min so that we contain the entire surface - 10 % should be enough
        expansion = (vert_max - vert_min) * expansion_factor
        vert_min -= expansion
        vert_max += expansion

        # the verts are in (x,y,z) and we need (z,y,x) for volumes
        vert_min = vert_min.flip(0)
        vert_max = vert_max.flip(0)

        # Calculate the spacing
        spacing = (vert_max - vert_min) / grid_size

        return core.StructuredGrid(grid_size,
                                   spacing=spacing,
                                   origin=vert_min,
                                   device=grid_device,
                                   dtype=torch.float32,
                                   requires_grad=False)
Ejemplo n.º 3
0
def process_mrti_data(rabbit, out_path):
    rerun = False
    if os.path.exists(f'{out_path}/{rabbit}_thermal_vol.nii.gz') and not rerun:
        print(f'Processing MRTI for {rabbit} ... done')
        return
    print(f'Processing MRTI for {rabbit} ... ', end='')
    data_dir = f'/hdscratch/ucair/AcuteBiomarker/Data/mrti/'
    files = sorted(glob.glob(f'{data_dir}/*'))
    mat_file = [x for x in files if rabbit in x][0]

    mrti_dict = loadmat(mat_file)

    cs_data = np.transpose(mrti_dict['PosDCS'][:, :, :, 0:3], (2, 1, 0, 3))
    mrti_data = np.transpose(mrti_dict['temps'], (2, 1, 0, 3))
    ctd_map = np.nan_to_num(np.transpose(mrti_dict['CTD_Map'], (2, 1, 0)),
                            nan=1.0)
    ctd_map = np.log(ctd_map)
    origin = np.ascontiguousarray(cs_data[0, 0, 0, ::-1])

    thermal_vol = core.StructuredGrid(size=mrti_data.shape[0:3],
                                      origin=origin,
                                      spacing=torch.tensor([1.0, 1.0, 1.0]),
                                      tensor=torch.tensor(mrti_data).permute(
                                          3, 0, 1, 2),
                                      channels=mrti_data.shape[-1])

    log_ctd_map = core.StructuredGrid(
        size=mrti_data.shape[0:3],
        origin=origin,
        spacing=torch.tensor([1.0, 1.0, 1.0]),
        tensor=torch.tensor(ctd_map).unsqueeze(0),
        channels=1)

    io.SaveITKFile(thermal_vol, f'{out_path}/{rabbit}_thermal_vol.nii.gz')
    io.SaveITKFile(log_ctd_map, f'{out_path}/{rabbit}_log_ctd_map.nii.gz')
    print('done')
def _generate_stir_vol(stir_center, stir_space, stir_data):

    # z_space = []
    # for i, c in enumerate(stir_center[1:]):
    #     z_space.append(c[2] - stir_center[i][2])

    # z_space = 2.0

    # z_slab = np.round(np.array(z_space).mean(), 3)
    z_slab = 2.0
    z_org = np.array(stir_center)[:, 2].min()
    vol_org = [
        stir_center[0][0] - ((stir_data.shape[0] / 2) * stir_space[0]),
        stir_center[0][1] - ((stir_data.shape[1] / 2) * stir_space[1]),
        z_org + z_slab / 2.0
    ]  # Plus or minus?

    vol_space = [stir_space[0], stir_space[1], z_slab]

    # stir_vol = core.StructuredGrid(
    #     [stir_data.shape[0], stir_data.shape[1], stir_data.shape[2]],
    #     spacing=vol_space,
    #     origin=vol_org,
    #     tensor=torch.tensor(stir_data).unsqueeze(0),
    #     channels=1
    # )

    stir_vol = core.StructuredGrid(
        [stir_data.shape[0], stir_data.shape[2], stir_data.shape[1]],
        spacing=[vol_space[0], vol_space[2], vol_space[1]],
        origin=[vol_org[0], vol_org[2], vol_org[1]],
        tensor=torch.tensor(stir_data.transpose(0, 2,
                                                1)).unsqueeze(0).flip(-2),
        channels=1)

    return stir_vol
Ejemplo n.º 5
0
def exvivo_to_stacked_blocks(rabbit, block, direction, affine_only=False, base_dir='/hdscratch/ucair/'):

    # This is registered from blocks to exvivo, so phi is needed to bring the exvivo MR image to the block images
    # Need to determine the grid to sample the MR onto
    # rabbit_dir = f'/hdscratch/ucair/{rabbit}/blockface/'
    block_dir = f'{base_dir}{rabbit}/blockface/{block}/'
    exvivo_dir = f'{base_dir}{rabbit}/mri/exvivo/'
    # block_list = sorted(glob.glob(f'{rabbit_dir}block*'))
    # orig_dir = f'/home/sci/blakez/ucair/{rabbit}/rawVolumes/ExVivo_2018-07-26/'

    # Load the affine
    # try:
    #     aff = np.loadtxt(f'{exvivo_dir}/surfaces/raw/blocks_to_exvivo_affine.txt')
    #     aff = torch.tensor(aff, device=device, dtype=torch.float32)
    # except IOError:
    aff = np.loadtxt(os.path.normpath(f'{block_dir}../recons/surfaces/raw/blocks_to_exvivo_affine.txt'))
    aff = torch.tensor(aff, device=device, dtype=torch.float32)

    # if affine_only:
    #     if direction == 'phi':
    #         return aff.inverse()
    #     else:
    #         return aff

    # Load the deformation
    # try:
    #     deformation = io.LoadITKFile(
    #         f'{exvivo_dir}/volumes/raw/blocks_{direction}_to_exvivo.mhd', device=device
    #     )
    #     deformation.set_size((256, 256, 256))
    # except RuntimeError:
    deformation = io.LoadITKFile(
        os.path.normpath(f'{block_dir}../recons/surfaces/raw/blocks_{direction}_to_exvivo.mhd'), device=device
    )
    deformation.set_size((256, 256, 256))

    if affine_only:
        deformation.set_to_identity_lut_()

    if direction == 'phi':

        spacing = []
        origin = []
        size = []

        # if 'block07' in block_path:
        #     hdr = tools.read_mhd_header(f'{block_path}/volumes/raw/difference_volume.mhd')
        # else:
        hdr = tools.read_mhd_header(f'{block_dir}/volumes/raw/{block}_phi_inv_stacking.mhd')
        spacing.append(np.array([float(x) for x in hdr['ElementSpacing'].split(' ')]))
        origin.append(np.array([float(x) for x in hdr['Offset'].split(' ')]))
        size.append(np.array([float(x) for x in hdr['DimSize'].split(' ')]))

        spacing = np.stack(spacing)
        origin = np.stack(origin)
        size = np.stack(size)

        extent = size * spacing + origin
        aff_grid_size = np.array((512, 512, 512))
        aff_grid_origin = np.min(origin, axis=0)
        aff_grid_spacing = (np.max(extent, axis=0) - aff_grid_origin) / aff_grid_size

        aff_grid = core.StructuredGrid(
            size=aff_grid_size.tolist()[::-1],
            spacing=aff_grid_spacing.tolist()[::-1],
            origin=aff_grid_origin.tolist()[::-1],
            device=device,
            channels=3
        )

        aff_grid.set_size(size=(512, 512, 512), inplace=True)
        aff_grid.set_to_identity_lut_()

        # Apply the FORWARD affine to the deformation
        a = aff[0:3, 0:3].float()
        t = aff[-0:3, 3].float()

        # Create a deformation from the affine that lives in the stacked blocks space
        aff_grid.data = aff_grid.data.flip(0)
        aff_grid.data = torch.matmul(a, aff_grid.data.permute(list(range(1, 3 + 1)) + [0]).unsqueeze(-1))
        aff_grid.data = (aff_grid.data.squeeze() + t).permute([-1] + list(range(0, 3)))
        aff_grid.data = aff_grid.data.flip(0)

        # Compose the grids
        exvivo_to_blocks = so.ComposeGrids.Create(device=device)([aff_grid, deformation])

    else:

        deformation.data = deformation.data.flip(0)

        # Apply the inverse affine to the grid
        aff = aff.inverse()
        a = aff[0:3, 0:3].float()
        t = aff[-0:3, 3].float()

        deformation.data = torch.matmul(a.unsqueeze(0).unsqueeze(0),
                                        deformation.data.permute(list(range(1, 3 + 1)) + [0]).unsqueeze(-1))
        deformation.data = (deformation.data.squeeze() + t).permute([-1] + list(range(0, 3)))

        # Flip phi_inv back to the way it was
        deformation.data = deformation.data.flip(0)

        exvivo_to_blocks = deformation.copy()

    return exvivo_to_blocks
Ejemplo n.º 6
0
def block_stacking(rabbit):

    rabbit_dir = f'/hdscratch2/{rabbit}/blockface/'
    raw_ext = '/surfaces/raw/'
    rigid_ext = '/surfaces/rigid/'
    deform_ext = '/surfaces/deformable/'
    vol_ext = '/volumes/raw/'
    stitch_ext = '/surfaces/raw/stitching/deformable/'

    # Get a list of the blocks
    block_list = sorted(glob.glob(f'{rabbit_dir}block*'))

    # for block_path in block_list:
    #     block = block_path.split('/')[-1]
    #     with open(f'{rabbit_dir}{block}{raw_ext}{block}_deformable_config.yaml', 'r') as f:
    #         params = yaml.load(f, Loader=yaml.FullLoader)
    #     params['propagation_sigma'] = [8.0, 8.0, 3.0]
    #     params['currents_sigma'] = [3.0, 1.5]
    #     with open(f'{rabbit_dir}{block}{raw_ext}{block}_deformable_config.yaml', 'w') as f:
    #         yaml.dump(params, f)

    # Determine the middle block
    # middle_block = block_list[9]
    middle_block = block_list[5]
    foot_blocks = block_list[block_list.index(middle_block):]
    head_blocks = block_list[:block_list.index(middle_block) + 1][::-1]

    rerun = True
    rigid = False
    # skip_blocks = ['block01', 'block02', 'block03', 'block04', 'block05', 'block06', 'block07', 'block08']

    skip_blocks = []

    # Go ahead and just delete any deformable surfaces to make sure that everything resets
    # for block_path in block_list:
    #     filelist = glob.glob(f'{block_path}/surfaces/deformable/*')
    #     for f in filelist:
    #         os.remove(f)

    if rerun or not os.path.exists(
            f'{middle_block}{vol_ext}{middle_block.split("/")[-1]}_phi_stacking.mhd'
    ):
        mid_block = middle_block.split('/')[-1]
        # middle = io.LoadITKFile(f'{middle_block}{vol_ext}difference_volume.mhd')
        middle = io.LoadITKFile(
            f'{middle_block}{vol_ext}difference_volume.nii.gz')
        # middle = io.LoadITKFile(f'{middle_block}{vol_ext}{mid_block}_volume.nrrd')
        middle.set_size((60, 1024, 1024))
        deformation = core.StructuredGrid.FromGrid(middle, channels=3)
        deformation.set_to_identity_lut_()
        io.SaveITKFile(
            deformation,
            f'{middle_block}{vol_ext}{middle_block.split("/")[-1]}_phi_inv_stacking.mhd'
        )
        io.SaveITKFile(
            deformation,
            f'{middle_block}{vol_ext}{middle_block.split("/")[-1]}_phi_stacking.mhd'
        )

        affine_tform = torch.eye(4)
        np.savetxt(
            f'{rabbit_dir}{mid_block}{raw_ext}{mid_block}_rigid_tform.txt',
            affine_tform.numpy())
        np.savetxt(
            f'{rabbit_dir}{mid_block}{vol_ext}{mid_block}_rigid_tform.txt',
            affine_tform.numpy())

        # Copy the files from raw to deformable for the middle surface
        # if os.path.exists(f'{rabbit_dir}{mid_block}{stitch_ext}'):
        #     mid_path = f'{mid_block}{stitch_ext}'
        # else:
        mid_path = f'{mid_block}{raw_ext}'

        files = [
            f'{rabbit_dir}{mid_path}{mid_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{mid_block}_ext.obj',
        ]
        if os.path.exists(f'{rabbit_dir}{mid_path}{mid_block}_foot.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_foot.obj']
        if os.path.exists(f'{rabbit_dir}{mid_path}{mid_block}_head.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_head.obj']
        if os.path.exists(
                f'{rabbit_dir}{mid_path}{mid_block}_foot_support.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_foot_support.obj']
        if os.path.exists(
                f'{rabbit_dir}{mid_path}{mid_block}_head_support.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_head_support.obj']

        out_names = []
        out_path = f'{rabbit_dir}{mid_block}{deform_ext}{mid_block}'
        for path in files:
            name = path.split('/')[-1].split(f'{mid_block}')[-1].replace(
                '.', '_deformable.')
            out_names += [f'{out_path}{name}']

        if not os.path.exists(out_path):
            os.makedirs(out_path)

        for in_file, out_file in zip(files, out_names):
            shutil.copy(in_file, out_file)

    # Loop over the foot blocks
    for i, block_path in enumerate(foot_blocks, 1):

        if i == len(foot_blocks):
            break

        target_block = block_path.split('/')[-1]
        source_block = foot_blocks[i].split('/')[-1]

        if source_block in skip_blocks:
            continue

        # if os.path.exists(f'{rabbit_dir}{source_block}{stitch_ext}'):
        #     mid_path = f'{source_block}{stitch_ext}'
        # else:
        mid_path = f'{source_block}{raw_ext}'

        target_surface_path = f'{rabbit_dir}{target_block}{deform_ext}{target_block}_foot_deformable.obj'
        source_surface_path = f'{rabbit_dir}{mid_path}{source_block}_head.obj'
        # if os.path.exists(f'{rabbit_dir}{mid_path}{source_block}_head_stitched.obj'):
        #     source_surface_path = f'{rabbit_dir}{source_block}{raw_ext}{source_block}_head_stitched.obj'

        extras_paths = [
            f'{rabbit_dir}{mid_path}{source_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{source_block}_ext.obj',
        ]

        if i < len(foot_blocks) - 1:
            extras_paths += [f'{rabbit_dir}{mid_path}{source_block}_foot.obj']

        if os.path.exists(
                f'{rabbit_dir}{mid_path}{source_block}_foot_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{mid_path}{source_block}_foot_support.obj'
            ]

        if os.path.exists(
                f'{rabbit_dir}{source_block}{deform_ext}{source_block}_head_deformable.obj'
        ) and not rerun:
            print(
                f'The deformed surface for {source_block} already exists ... Next block'
            )
            continue

        try:
            verts, faces = io.ReadOBJ(target_surface_path)
            tar_surface = core.TriangleMesh(verts, faces)
            tar_surface.to_(device)
        except IOError:
            print(
                f'The deformed foot surface for {target_block} was not found ... Next block'
            )
            continue

        # Need to see if the target needs any support
        support_block = block_list[block_list.index(block_path) -
                                   1].split('/')[-1]
        if os.path.exists(
                f'{rabbit_dir}{support_block}{deform_ext}{support_block}_foot_support_deformable.obj'
        ):
            verts, faces = io.ReadOBJ(
                f'{rabbit_dir}{support_block}{deform_ext}{support_block}_foot_support_deformable.obj'
            )
            tar_surface.add_surface_(verts.to(device=device),
                                     faces.to(device=device))

        try:
            verts, faces = io.ReadOBJ(source_surface_path)
            src_surface = core.TriangleMesh(verts, faces)
            src_surface.to_(device)
            src_surface.flip_normals_()
        except IOError:
            print(
                f'The raw head surface for {source_block} was not found ... Next block'
            )
            continue

        extra_surfaces = []
        for path in extras_paths:
            try:
                verts, faces = io.ReadOBJ(path)
            except IOError:
                extra_name = path.split('/')[-1]
                print(
                    f'{extra_name} not found as an extra ... removing from list'
                )
                _ = extras_paths.pop(extras_paths.index(path))
                continue

            extra_surfaces += [core.TriangleMesh(verts, faces)]
            extra_surfaces[-1].to_(device)

        # Load or create the dictionary for registration
        try:
            if rerun:
                raise IOError
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_affine_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'spatial_sigma': [2.0, 0.5],
                'affine_lr': 1.0e-08,
                'translation_lr': 1.0e-05,
                'converge': 1.0,
                'rigid_transform': True
            }

        print(f'Registering {source_block} to {target_block}:')

        affine_tform = tools.affine_register(
            tar_surface.copy(),
            src_surface.copy(),
            spatial_sigma=params['spatial_sigma'],
            affine_lr=params['affine_lr'],
            translation_lr=params['translation_lr'],
            rigid=params['rigid_transform'],
            converge=params['converge'],
            device=device)

        # Apply the affine to the source element and the excess
        aff_tformer = uo.AffineTransformSurface.Create(affine_tform,
                                                       device=device)
        aff_src_surface = aff_tformer(src_surface)

        aff_extra_surface = []
        for surface in extra_surfaces:
            aff_extra_surface += [aff_tformer(surface)]

        out_path = f'{rabbit_dir}{source_block}{rigid_ext}{source_block}'
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_rigid.')
            # if '_stitched' in name:
            #     name = name.replace('_stitched', '')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        if rigid:
            continue

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_affine_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save out all of the affine transformed surfaces and the transformation
        out_path = f'{rabbit_dir}{source_block}{rigid_ext}{source_block}'

        # Save the affine in the volumes and in the surfaces location
        np.savetxt(
            f'{rabbit_dir}{source_block}{raw_ext}{source_block}_rigid_tform.txt',
            affine_tform.numpy())
        np.savetxt(
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_rigid_tform.txt',
            affine_tform.numpy())

        if not os.path.exists(f'{out_path}_head_rigid.obj') or rerun:
            io.WriteOBJ(aff_src_surface.vertices, aff_src_surface.indices,
                        f'{out_path}_head_rigid.obj')

        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_rigid.')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        try:
            if rerun:
                raise IOError
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_deformable_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'currents_sigma': [3.0, 0.5],
                'propagation_sigma': [6.0, 6.0, 3.0],
                'deformable_lr': [1.0e-04, 0.5e-04],
                'converge': 1.0,
                'grid_size': [20, 100, 100],
                'niter': 500
            }
            # params = {
            #     'currents_sigma': [3.0, 1.5],
            #     'propagation_sigma': [6.0, 6.0, 3.0],
            #     'deformable_lr': [2.0e-04, 1.0e-04],
            #     'converge': 1.0,
            #     'grid_size': [20, 100, 100],
            #     'niter': 500
            # }

        # Account for some old parameter names - can be deleted later
        if 'spatial_sigma' in params.keys():
            params['currents_sigma'] = params['spatial_sigma']
            del params['spatial_sigma']
        if 'phi_inv_size' in params.keys():
            params['grid_size'] = params['phi_inv_size']
            del params['phi_inv_size']
        if 'rigid_transform' in params.keys():
            del params['rigid_transform']
        if 'smoothing_sigma' in params.keys():
            params['propagation_sigma'] = params['smoothing_sigma']
            del params['smoothing_sigma']
        if type(params['deformable_lr']) is not list:
            params['deformable_lr'] = [params['deformable_lr']] * len(
                params['spatial_sigma'])

        # Do the deformable registration
        def_surface, def_extras, phi, phi_inv = tools.deformable_register(
            tar_surface.copy(),
            aff_src_surface.copy(),
            currents_sigma=params['currents_sigma'],
            prop_sigma=params['propagation_sigma'],
            deformable_lr=params['deformable_lr'],
            converge=params['converge'],
            grid_size=params['grid_size'],
            src_excess=aff_extra_surface,
            accu_forward=True,
            accu_inverse=True,
            device=device,
            grid_device='cuda:1',
            iters=params['niter'])

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_deformable_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save out all of the deformable transformed surfaces and phi inv
        io.SaveITKFile(
            phi_inv,
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_phi_inv_stacking.mhd'
        )
        io.SaveITKFile(
            phi,
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_phi_stacking.mhd'
        )
        out_path = f'{rabbit_dir}{source_block}{deform_ext}{source_block}'
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        if not os.path.exists(f'{out_path}_head_deformable.obj') or rerun:
            io.WriteOBJ(def_surface.vertices, def_surface.indices,
                        f'{out_path}_head_deformable.obj')

        for extra_path, extra_surface in zip(extras_paths, def_extras):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_deformable.')
            # if '_stitched' in name:
            #     name = name.replace('_stitched', '')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

    print('Done registering foots blocks to middle block.')

    # Loop over the head blocks
    for i, block_path in enumerate(head_blocks, 1):

        if i == len(head_blocks):
            break

        target_block = block_path.split('/')[-1]
        source_block = head_blocks[i].split('/')[-1]

        if source_block in skip_blocks:
            continue

        if os.path.exists(f'{rabbit_dir}{source_block}{stitch_ext}'):
            mid_path = f'{source_block}{stitch_ext}'
        else:
            mid_path = f'{source_block}{raw_ext}'

        target_surface_path = f'{rabbit_dir}{target_block}{deform_ext}{target_block}_head_deformable.obj'
        source_surface_path = f'{rabbit_dir}{mid_path}{source_block}_foot.obj'
        if os.path.exists(
                f'{rabbit_dir}{mid_path}{source_block}_foot_stitched.obj'):
            source_surface_path = f'{rabbit_dir}{mid_path}{source_block}_foot_stitched.obj'

        extras_paths = [
            f'{rabbit_dir}{mid_path}{source_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{source_block}_ext.obj'
        ]

        if i < len(head_blocks) - 1:
            extras_paths += [f'{rabbit_dir}{mid_path}{source_block}_head.obj']

        if os.path.exists(
                f'{rabbit_dir}{mid_path}{source_block}_head_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{mid_path}{source_block}_head_support.obj'
            ]

        if os.path.exists(
                f'{rabbit_dir}{source_block}{deform_ext}{source_block}_foot_deformable.obj'
        ) and not rerun:
            print(
                f'The deformed surface for {source_block} already exists ... Next block'
            )
            continue

        try:
            verts, faces = io.ReadOBJ(target_surface_path)
            tar_surface = core.TriangleMesh(verts, faces)
            tar_surface.to_(device)
        except IOError:
            print(
                f'The deformed foot surface for {target_block} was not found ... Next block'
            )
            continue

        # Need to see if the target needs any support
        support_block = block_list[block_list.index(block_path) +
                                   1].split('/')[-1]
        if os.path.exists(
                f'{rabbit_dir}{support_block}{deform_ext}{support_block}_head_support_deformable.obj'
        ):
            verts, faces = io.ReadOBJ(
                f'{rabbit_dir}{support_block}{deform_ext}{support_block}_head_support_deformable.obj'
            )
            tar_surface.add_surface_(verts.to(device=device),
                                     faces.to(device=device))

        try:
            verts, faces = io.ReadOBJ(source_surface_path)
            src_surface = core.TriangleMesh(verts, faces)
            src_surface.to_(device)
            src_surface.flip_normals_()
        except IOError:
            print(
                f'The raw foot surface for {source_block} was not found ... Next block'
            )
            continue

        extra_surfaces = []
        for path in extras_paths:
            try:
                verts, faces = io.ReadOBJ(path)
            except IOError:
                extra_name = path.split('/')[-1]
                print(
                    f'{extra_name} not found as an extra ... removing from list'
                )
                _ = extras_paths.pop(extras_paths.index(path))
                continue

            extra_surfaces += [core.TriangleMesh(verts, faces)]
            extra_surfaces[-1].to_(device)

        # Load or create the dictionary for registration
        try:
            if rerun:
                raise IOError
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_affine_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'spatial_sigma': [2.0, 0.5],
                'affine_lr': 1.0e-08,
                'translation_lr': 1.0e-05,
                'converge': 1.0,
                'rigid_transform': True
            }

        print(f'Registering {source_block} to {target_block}:')

        affine_tform = tools.affine_register(
            tar_surface.copy(),
            src_surface.copy(),
            spatial_sigma=params['spatial_sigma'],
            affine_lr=params['affine_lr'],
            translation_lr=params['translation_lr'],
            rigid=params['rigid_transform'],
            converge=params['converge'],
            device=device)

        # Apply the affine to the source element and the excess
        aff_tformer = uo.AffineTransformSurface.Create(affine_tform,
                                                       device=device)
        aff_src_surface = aff_tformer(src_surface)

        aff_extra_surface = []
        for surface in extra_surfaces:
            aff_extra_surface += [aff_tformer(surface)]

        out_path = f'{rabbit_dir}{source_block}{rigid_ext}{source_block}'
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_rigid.')
            if '_stitched' in name:
                name = name.replace('_stitched', '')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        if rigid:
            continue

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_affine_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save out all of the affine transformed surfaces and the transformation
        out_path = f'{rabbit_dir}{source_block}{rigid_ext}{source_block}'

        # Save the affine in the volumes and in the surfaces location
        np.savetxt(
            f'{rabbit_dir}{source_block}{raw_ext}{source_block}_rigid_tform.txt',
            affine_tform.numpy())
        np.savetxt(
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_rigid_tform.txt',
            affine_tform.numpy())

        if not os.path.exists(f'{out_path}_foot_rigid.obj') or rerun:
            io.WriteOBJ(aff_src_surface.vertices, aff_src_surface.indices,
                        f'{out_path}_foot_rigid.obj')

        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_rigid.')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        try:
            if rerun:
                raise IOError
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_deformable_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'currents_sigma': [3.0, 0.5],
                'propagation_sigma': [6.0, 6.0, 3.0],
                'deformable_lr': [1.0e-04, 0.5e-04],
                'converge': 1.0,
                'grid_size': [20, 100, 100],
                'niter': 500
            }

        # if 'spatial_sigma' in params.keys():
        #     params['currents_sigma'] = params['spatial_sigma']
        #     del params['spatial_sigma']
        # if 'phi_inv_size' in params.keys():
        #     params['grid_size'] = params['phi_inv_size']
        #     del params['phi_inv_size']
        # if 'rigid_transform' in params.keys():
        #     del params['rigid_transform']
        # if 'smoothing_sigma' in params.keys():
        #     params['propagation_sigma'] = params['smoothing_sigma']
        #     del params['smoothing_sigma']
        #
        # if type(params['deformable_lr']) is not list:
        #     params['deformable_lr'] = [params['deformable_lr']] * len(params['spatial_sigma'])

        # Do the deformable registration
        def_surface, def_extras, phi, phi_inv = tools.deformable_register(
            tar_surface.copy(),
            aff_src_surface.copy(),
            currents_sigma=params['currents_sigma'],
            prop_sigma=params['propagation_sigma'],
            deformable_lr=params['deformable_lr'],
            converge=params['converge'],
            grid_size=params['grid_size'],
            src_excess=aff_extra_surface,
            accu_forward=True,
            accu_inverse=True,
            device=device,
            grid_device='cuda:1',
            iters=params['niter'])

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_deformable_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save out all of the deformable transformed surfaces and phi inv
        io.SaveITKFile(
            phi_inv,
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_phi_inv_stacking.mhd'
        )
        io.SaveITKFile(
            phi,
            f'{rabbit_dir}{source_block}{vol_ext}{source_block}_phi_stacking.mhd'
        )
        out_path = f'{rabbit_dir}{source_block}{deform_ext}{source_block}'
        if not os.path.exists(out_path):
            os.makedirs(out_path)
        if not os.path.exists(f'{out_path}_foot_deformable.obj') or rerun:
            io.WriteOBJ(def_surface.vertices, def_surface.indices,
                        f'{out_path}_foot_deformable.obj')

        for extra_path, extra_surface in zip(extras_paths, def_extras):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_deformable.')
            # if '_stitched' in name:
            #     name = name.replace('_stitched', '')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

    print('Done registering head blocks to middle block.')
Ejemplo n.º 7
0
def exvivo_to_blocks(stacked_blocks_dir):

    # This is registered from blocks to exvivo, so phi is needed to bring the exvivo MR image to the block images
    # Need to determine the grid to sample the MR onto
    rabbit_dir = f'/hdscratch/ucair/{rabbit}/blockface/'
    block_list = sorted(glob.glob(f'{rabbit_dir}block*'))
    orig_dir = f'/home/sci/blakez/ucair/{rabbit}/rawVolumes/ExVivo_2018-07-26/'
    spacing = []
    origin = []
    size = []
    for block_path in block_list:

        if 'block07' in block_path:
            hdr = tools.read_mhd_header(f'{block_path}/volumes/raw/difference_volume.mhd')
        else:
            hdr = tools.read_mhd_header(f'{block_path}/volumes/deformable/difference_volume_deformable.mhd')
        spacing.append(np.array([float(x) for x in hdr['ElementSpacing'].split(' ')]))
        origin.append(np.array([float(x) for x in hdr['Offset'].split(' ')]))
        size.append(np.array([float(x) for x in hdr['DimSize'].split(' ')]))
    spacing = np.stack(spacing)
    origin = np.stack(origin)
    size = np.stack(size)

    extent = size * spacing + origin
    aff_grid_size = np.array((512, 512, 512))
    aff_grid_origin = np.min(origin, axis=0)
    aff_grid_spacing = (np.max(extent, axis=0) - aff_grid_origin) / aff_grid_size

    aff_grid = core.StructuredGrid(
        size=aff_grid_size.tolist()[::-1],
        spacing=aff_grid_spacing.tolist()[::-1],
        origin=aff_grid_origin.tolist()[::-1],
        device=device,
        channels=3
    )

    aff_grid.set_size(size=(512, 512, 512), inplace=True)
    aff_grid.set_to_identity_lut_()

    # Load the affine
    aff = np.loadtxt(f'{orig_dir}blocks_to_exvivo_affine.txt')
    aff = torch.tensor(aff, device=device, dtype=torch.float32)

    # Apply the FORWARD affine to the deformation
    # aff = aff.inverse()
    a = aff[0:3, 0:3].float()
    t = aff[-0:3, 3].float()

    # Create a deformation from the affine that lives in the stacked blocks space

    aff_grid.data = aff_grid.data.flip(0)

    aff_grid.data = torch.matmul(a, aff_grid.data.permute(list(range(1, 3 + 1)) + [0]).unsqueeze(-1))
    aff_grid.data = (aff_grid.data.squeeze() + t).permute([-1] + list(range(0, 3)))

    aff_grid.data = aff_grid.data.flip(0)

    # Load the defromabale transformation
    phi = io.LoadITKFile(
        f'{orig_dir}blocks_phi_to_exvivo.mhd', device=device
    )
    phi.set_size((256, 256, 256))

    # Compose the grids
    deformation = so.ComposeGrids.Create(device=device)([aff_grid, phi])

    return deformation
Ejemplo n.º 8
0
def corrections(rabbit_dir, block, corr_num):

    block_path = f'{rabbit_dir}{block}/'

    image_list = sorted(glob.glob(f'{block_path}/images/filtered/*'))

    with open(f'{block_path}/volumes/raw/{block}_affine_dictionary.yaml',
              'r') as f:
        Adict = yaml.load(f, Loader=yaml.FullLoader)

    surface_list = [x for x in image_list if 'surface' in x]
    scatter_list = [x for x in image_list if 'scatter' in x]

    # Load the surface image
    ImSurface_good = io.LoadITKFile(surface_list[corr_num - 1], device=device)
    ImSurface_good.set_spacing_(Adict['spacing'])
    ImSurface_good.set_origin_(
        -1 * (ImSurface_good.size * ImSurface_good.spacing) / 2)
    ImSurface_good /= 255.0

    ImSurface_bad = io.LoadITKFile(surface_list[corr_num], device=device)
    ImSurface_bad.set_spacing_(Adict['spacing'])
    ImSurface_bad.set_origin_(-1 *
                              (ImSurface_bad.size * ImSurface_bad.spacing) / 2)
    ImSurface_bad /= 255.0

    # Apply the affines to both of the images
    aff_filter = so.AffineTransform.Create(affine=torch.tensor(Adict[corr_num -
                                                                     1],
                                                               device=device),
                                           device=device)
    ImSurface_good = aff_filter(ImSurface_good)

    aff_filter = so.AffineTransform.Create(affine=torch.tensor(Adict[corr_num],
                                                               device=device),
                                           device=device)
    ImSurface_bad = aff_filter(ImSurface_bad)

    points = torch.tensor(tools.LandmarkPicker(
        [ImSurface_bad[0].squeeze().cpu(), ImSurface_good[0].squeeze().cpu()]),
                          dtype=torch.float32,
                          device=device).permute(1, 0, 2)

    # Change to real coordinates
    points *= torch.cat([
        ImSurface_good.spacing[None, None, :], ImSurface_good.spacing[None,
                                                                      None, :]
    ], 0)
    points += torch.cat([
        ImSurface_good.origin[None, None, :], ImSurface_good.origin[None,
                                                                    None, :]
    ], 0)

    aff_filter = so.AffineTransform.Create(points[1], points[0], device=device)

    corr_affine = torch.eye(3, device=device, dtype=torch.float32)
    corr_affine[0:2, 0:2] = aff_filter.affine
    corr_affine[0:2, 2] = aff_filter.translation

    ImPrev = ImSurface_good.copy()

    for scat, surf in zip(scatter_list[corr_num:], surface_list[corr_num:]):
        print(f'Registering {scat.split("/")[-1]} .... ')
        sys.stdout.flush()
        image_num = scat.split('/')[-1].split('_')[1]

        # Get the number the file is from the start
        dist = scatter_list.index(scat)

        # Load the next image
        ImScatter = io.LoadITKFile(scat, device=device)
        ImScatter.set_spacing_(ImPrev.spacing)
        ImScatter.set_origin_(ImPrev.origin)
        ImScatter /= 255.0

        ImSurface = io.LoadITKFile(surf, device=device)
        ImSurface.set_spacing_(ImPrev.spacing)
        ImSurface.set_origin_(ImPrev.origin)
        ImSurface /= 255.0

        difference = ImScatter - ImSurface

        ImDifference = core.StructuredGrid(
            ImSurface.shape()[1:],
            tensor=difference.data[2].unsqueeze(0),
            spacing=ImSurface.spacing,
            origin=ImSurface.origin,
            device=device,
            dtype=torch.float32,
            channels=1)

        affine = torch.mm(corr_affine, torch.tensor(Adict[dist],
                                                    device=device))

        # Save out the images
        aff_filter = so.AffineTransform.Create(affine=affine, device=device)
        aff_scatter = aff_filter(ImScatter)
        aff_surface = aff_filter(ImSurface)
        aff_difference = aff_filter(ImDifference)
        # difference = (difference - difference.min()) / (difference.max() - difference.min())

        io.SaveITKFile(
            aff_scatter,
            f'{block_path}/volumes/raw/scatter/IMG_{image_num}_scatter.mhd')
        io.SaveITKFile(
            aff_surface,
            f'{block_path}/volumes/raw/surface/IMG_{image_num}_surface.mhd')
        io.SaveITKFile(
            aff_difference,
            f'{block_path}/volumes/raw/difference/IMG_{image_num}_difference.mhd'
        )

        Adict[dist] = affine.detach().cpu().clone().tolist()
        ImPrev = aff_scatter.copy()

    with open(f'{block_path}/volumes/raw/{block}_affine_dictionary.yaml',
              'w') as f:
        yaml.dump(Adict, f)
Ejemplo n.º 9
0
def SolveAffineGrid(source_image, input_affine):
    '''Takes a source volume and an affine matrix and solves for the necessary
       grid in the target space of the affine. Essentially calculates the bounding
       box of the source image after apply the affine transformation

       source_image = volume to be transformed by the affine (Image3D type)
       input_affine = the affine transformation (4x4)

       Returns the grid for the transformed source volume in real coordinates'''

    # Make sure we don't mess with the incoming affine
    affine = np.copy(input_affine)

    # Get parameters from the incoming source image
    in_sz = source_image.size.tolist()
    in_sp = source_image.spacing.tolist()
    in_or = source_image.origin.tolist()

    # Extract the pure rotation and ignore scaling to find the final size of the volume
    U, s, V = np.linalg.svd(affine[0:3, 0:3])
    rotMat = np.eye(4)
    rotMat[0:3, 0:3] = np.dot(U, V)

    # Get the corners of the volume in index coordinates
    inputCorners = np.array([0, 0, 0, 1])
    inputCorners = np.vstack((inputCorners, np.array([in_sz[0], 0, 0, 1])))
    inputCorners = np.vstack((inputCorners, np.array([0, in_sz[1], 0, 1])))
    inputCorners = np.vstack((inputCorners, np.array([in_sz[0], in_sz[1], 0, 1])))

    # Account for the case that the source image is 3D
    if len(source_image.size) == 3:
        inputCorners = np.vstack((inputCorners, np.array([0, 0, in_sz[2], 1])))
        inputCorners = np.vstack((inputCorners, np.array([in_sz[0], 0, in_sz[2], 1])))
        inputCorners = np.vstack((inputCorners, np.array([0, in_sz[1], in_sz[2], 1])))
        inputCorners = np.vstack((inputCorners, np.array([in_sz[0], in_sz[1], in_sz[2], 1])))

    # Define the index corners to find the final size of the transformed volume
    indexCorners = np.matrix(inputCorners)

    # Find the real corners of the input volume for finding the output origin
    realCorners = np.matrix(np.multiply(inputCorners, np.array(in_sp + [1])) + np.array(in_or + [0]))

    # Apply the transformations to the real and index corners
    # Need to subtract the mean and apply around the center
    # Translation is not going to effect the index size, but will effect the origin of the block for real coordinates
    outRealCorners = np.matmul(affine, realCorners.transpose())
    outIndxCorners = np.matmul(rotMat, indexCorners.transpose())

    # Find the size in real and index coordinates of the output volume
    realSize = (np.max(outRealCorners, 1) - np.min(outRealCorners, 1))[0:3]
    indexSize = (np.max(outIndxCorners, 1) - np.min(outIndxCorners, 1))[0:3]

    # The index size is the size of the output volume
    out_sz = np.squeeze(np.array(np.ceil(indexSize).astype(int)))
    out_sz[out_sz == 0] = 1

    # We can divide index size into real size to get the spacing of the real volume; Need to account for 2D zero
    out_sp = np.squeeze(np.array(np.divide(realSize, indexSize, where=indexSize != 0)))
    out_sp[out_sp == 0] = 1

    # Find the output origin by taking the min in each dimension of the real transformed corners
    out_or = np.squeeze(np.array(np.min(outRealCorners, 1)))[0:3]

    # Make the output structured grid
    out_tensor = core.StructuredGrid(
        size=out_sz.copy(),
        origin=out_or.copy(),
        spacing=out_sp.copy(),
        device=source_image.device,
        channels=1
    )
    return out_tensor
Ejemplo n.º 10
0
def front_face_stacking(rabbit, base_dir='/hdscratch/ucair/'):

    rabbit_dir = f'{base_dir}{rabbit}/blockface/'
    raw_ext = '/surfaces/raw/'
    # rigid_ext = '/surfaces/rigid/'
    ff_ext = '/surfaces/frontface/'
    deform_ext = '/surfaces/deformable/'
    vol_ext = '/volumes/raw/'
    stitch_ext = '/surfaces/raw/stitching/deformable/'

    # Get a list of the blocks
    block_list = sorted(glob.glob(f'{rabbit_dir}block*'))

    # Determine the middle block
    middle_block = block_list[4]
    foot_blocks = block_list[block_list.index(middle_block):]
    head_blocks = block_list[:block_list.index(middle_block) + 1][::-1]

    rerun = True

    # skip_blocks = ['block05', 'block06', 'block07', 'block08', 'block09', 'block10', 'block11', 'block12']

    skip_blocks = []

    if rerun:
        mid_block = middle_block.split('/')[-1]

        if not os.path.exists(f'{rabbit_dir}{mid_block}{ff_ext}'):
            os.makedirs(f'{rabbit_dir}{mid_block}{ff_ext}')

        affine_tform = torch.eye(4)
        np.savetxt(
            f'{rabbit_dir}{mid_block}{raw_ext}{mid_block}_front_face_tform.txt',
            affine_tform.numpy())

        # Copy the files from raw to deformable for the middle surface
        if os.path.exists(f'{rabbit_dir}{mid_block}{stitch_ext}'):
            mid_path = f'{mid_block}{stitch_ext}'
        else:
            mid_path = f'{mid_block}{raw_ext}'

        files = [
            f'{rabbit_dir}{mid_path}{mid_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{mid_block}_ext.obj',
        ]
        if os.path.exists(f'{rabbit_dir}{mid_path}{mid_block}_foot.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_foot.obj']
        if os.path.exists(f'{rabbit_dir}{mid_path}{mid_block}_head.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_head.obj']
        if os.path.exists(
                f'{rabbit_dir}{mid_path}{mid_block}_foot_support.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_foot_support.obj']
        if os.path.exists(
                f'{rabbit_dir}{mid_path}{mid_block}_head_support.obj'):
            files += [f'{rabbit_dir}{mid_path}{mid_block}_head_support.obj']

        out_names = []
        for path in files:
            name = path.split('/')[-1].split(f'{mid_block}')[-1].replace(
                '.', '_front_face.')
            out_path = f'{rabbit_dir}{mid_block}{ff_ext}{mid_block}'
            out_names += [f'{out_path}{name}']

        for in_file, out_file in zip(files, out_names):
            shutil.copy(in_file, out_file)

    # Loop over the foot blocks
    for i, block_path in enumerate(foot_blocks, 1):

        if i == len(foot_blocks):
            break

        target_block = block_path.split('/')[-1]
        source_block = foot_blocks[i].split('/')[-1]

        if source_block in skip_blocks:
            continue

        if os.path.exists(f'{rabbit_dir}{source_block}{stitch_ext}'):
            mid_path = f'{source_block}{stitch_ext}'
        else:
            mid_path = f'{source_block}{raw_ext}'

        target_surface_path = f'{rabbit_dir}{target_block}{ff_ext}{target_block}_foot_front_face.obj'
        source_surface_path = f'{rabbit_dir}{mid_path}{source_block}_head.obj'

        extras_paths = [
            f'{rabbit_dir}{mid_path}{source_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{source_block}_ext.obj',
        ]

        if i < len(foot_blocks) - 1:
            extras_paths += [f'{rabbit_dir}{mid_path}{source_block}_foot.obj']

        if os.path.exists(
                f'{rabbit_dir}{mid_path}{source_block}_foot_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{mid_path}{source_block}_foot_support.obj'
            ]

        if os.path.exists(
                f'{rabbit_dir}{source_block}{ff_ext}{source_block}_head_front_face.obj'
        ) and not rerun:
            print(
                f'The front face surface for {source_block} already exists ... Next block'
            )
            continue

        try:
            verts, faces = io.ReadOBJ(target_surface_path)
            tar_surface = core.TriangleMesh(verts, faces)
            tar_surface.to_(device)
        except IOError:
            print(
                f'The front face foot surface for {target_block} was not found ... Next block'
            )
            continue

        # Need to see if the target needs any support
        support_block = block_list[block_list.index(block_path) -
                                   1].split('/')[-1]
        if os.path.exists(
                f'{rabbit_dir}{support_block}{ff_ext}{support_block}_foot_support_front_face.obj'
        ):
            verts, faces = io.ReadOBJ(
                f'{rabbit_dir}{support_block}{ff_ext}{support_block}_foot_support_front_face.obj'
            )
            tar_surface.add_surface_(verts.to(device=device),
                                     faces.to(device=device))

        try:
            verts, faces = io.ReadOBJ(source_surface_path)
            src_surface = core.TriangleMesh(verts, faces)
            src_surface.to_(device)
            src_surface.flip_normals_()
        except IOError:
            print(
                f'The raw head surface for {source_block} was not found ... Next block'
            )
            continue

        extra_surfaces = []
        for path in extras_paths:
            try:
                verts, faces = io.ReadOBJ(path)
            except IOError:
                extra_name = path.split('/')[-1]
                print(
                    f'{extra_name} not found as an extra ... removing from list'
                )
                _ = extras_paths.pop(extras_paths.index(path))
                continue

            extra_surfaces += [core.TriangleMesh(verts, faces)]
            extra_surfaces[-1].to_(device)

        # Load or create the dictionary for registration
        try:
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'spatial_sigma': [2.0, 1.0],
                'affine_lr': 1.0e-06,
                'translation_lr': 1.0e-04,
                'converge': 0.01,
                'rigid_transform': True
            }

        print(f'Registering {source_block} to {target_block}:')

        affine_tform = front_face_register(
            tar_surface.copy(),
            src_surface.copy(),
            spatial_sigma=params['spatial_sigma'],
            affine_lr=params['affine_lr'],
            translation_lr=params['translation_lr'],
            converge=params['converge'],
            device=device)

        # Apply the affine to the source element and the excess
        aff_tformer = uo.AffineTransformSurface.Create(affine_tform,
                                                       device=device)
        aff_src_surface = aff_tformer(src_surface)

        aff_extra_surface = []
        for surface in extra_surfaces:
            aff_extra_surface += [aff_tformer(surface)]

        out_path = f'{rabbit_dir}{source_block}{ff_ext}{source_block}'
        if not os.path.exists(f'{rabbit_dir}{source_block}{ff_ext}'):
            os.makedirs(f'{rabbit_dir}{source_block}{ff_ext}')

        if not os.path.exists(f'{out_path}_head_front_face.obj') or rerun:
            io.WriteOBJ(aff_src_surface.vertices, aff_src_surface.indices,
                        f'{out_path}_head_front_face.obj')

        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_front_face.')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save the affine in the volumes and in the surfaces location
        np.savetxt(
            f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_tform.txt',
            affine_tform.numpy())

    print('Done registering foots blocks to middle block.')

    # Loop over the head blocks
    for i, block_path in enumerate(head_blocks, 1):

        if i == len(head_blocks):
            break

        target_block = block_path.split('/')[-1]
        source_block = head_blocks[i].split('/')[-1]

        if source_block in skip_blocks:
            continue

        if os.path.exists(f'{rabbit_dir}{source_block}{stitch_ext}'):
            mid_path = f'{source_block}{stitch_ext}'
        else:
            mid_path = f'{source_block}{raw_ext}'

        target_surface_path = f'{rabbit_dir}{target_block}{ff_ext}{target_block}_head_front_face.obj'
        source_surface_path = f'{rabbit_dir}{mid_path}{source_block}_foot.obj'

        extras_paths = [
            f'{rabbit_dir}{mid_path}{source_block}_decimate.obj',
            f'{rabbit_dir}{mid_path}{source_block}_ext.obj'
        ]

        if i < len(head_blocks) - 1:
            extras_paths += [f'{rabbit_dir}{mid_path}{source_block}_head.obj']

        if os.path.exists(
                f'{rabbit_dir}{mid_path}{source_block}_head_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{mid_path}{source_block}_head_support.obj'
            ]

        if os.path.exists(
                f'{rabbit_dir}{source_block}{ff_ext}{source_block}_foot_front_face.obj'
        ) and not rerun:
            print(
                f'The front face surface for {source_block} already exists ... Next block'
            )
            continue

        try:
            verts, faces = io.ReadOBJ(target_surface_path)
            tar_surface = core.TriangleMesh(verts, faces)
            tar_surface.to_(device)
        except IOError:
            print(
                f'The front face foot surface for {target_block} was not found ... Next block'
            )
            continue

        # Need to see if the target needs any support
        support_block = block_list[block_list.index(block_path) +
                                   1].split('/')[-1]
        if os.path.exists(
                f'{rabbit_dir}{support_block}{ff_ext}{support_block}_head_support_front_face.obj'
        ):
            verts, faces = io.ReadOBJ(
                f'{rabbit_dir}{support_block}{ff_ext}{support_block}_head_support_front_face.obj'
            )
            tar_surface.add_surface_(verts.to(device=device),
                                     faces.to(device=device))

        try:
            verts, faces = io.ReadOBJ(source_surface_path)
            src_surface = core.TriangleMesh(verts, faces)
            src_surface.to_(device)
            src_surface.flip_normals_()
        except IOError:
            print(
                f'The raw foot surface for {source_block} was not found ... Next block'
            )
            continue

        extra_surfaces = []
        for path in extras_paths:
            try:
                verts, faces = io.ReadOBJ(path)
            except IOError:
                extra_name = path.split('/')[-1]
                print(
                    f'{extra_name} not found as an extra ... removing from list'
                )
                _ = extras_paths.pop(extras_paths.index(path))
                continue

            extra_surfaces += [core.TriangleMesh(verts, faces)]
            extra_surfaces[-1].to_(device)

        # Load or create the dictionary for registration
        try:
            with open(
                    f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'spatial_sigma': [2.0, 1.0],
                'affine_lr': 1.0e-06,
                'translation_lr': 1.0e-04,
                'converge': 0.01,
                'rigid_transform': True
            }

        print(f'Registering {source_block} to {target_block}:')

        affine_tform = front_face_register(
            tar_surface.copy(),
            src_surface.copy(),
            spatial_sigma=params['spatial_sigma'],
            affine_lr=params['affine_lr'],
            translation_lr=params['translation_lr'],
            converge=params['converge'],
            device=device)

        # Apply the affine to the source element and the excess
        aff_tformer = uo.AffineTransformSurface.Create(affine_tform,
                                                       device=device)
        aff_src_surface = aff_tformer(src_surface)

        aff_extra_surface = []
        for surface in extra_surfaces:
            aff_extra_surface += [aff_tformer(surface)]

        out_path = f'{rabbit_dir}{source_block}{ff_ext}{source_block}'
        if not os.path.exists(f'{rabbit_dir}{source_block}{ff_ext}'):
            os.makedirs(f'{rabbit_dir}{source_block}{ff_ext}')

        if not os.path.exists(f'{out_path}_foot_front_face.obj') or rerun:
            io.WriteOBJ(aff_src_surface.vertices, aff_src_surface.indices,
                        f'{out_path}_foot_front_face.obj')

        for extra_path, extra_surface in zip(extras_paths, aff_extra_surface):
            name = extra_path.split('/')[-1].split(
                f'{source_block}')[-1].replace('.', '_front_face.')
            if not os.path.exists(f'{out_path}{name}') or rerun:
                io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                            f'{out_path}{name}')

        # Save out the parameters:
        with open(
                f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_config.yaml',
                'w') as f:
            yaml.dump(params, f)

        # Save the affine in the volumes and in the surfaces location
        np.savetxt(
            f'{rabbit_dir}{source_block}{raw_ext}{source_block}_front_face_tform.txt',
            affine_tform.numpy())

    print('Done registering head blocks to middle block.')
Ejemplo n.º 11
0
def process_mic(rabbit):

    raw_mic_dir = f'/hdscratch/ucair/{rabbit}/microscopic/'
    bf_dir = f'/hdscratch/ucair/{rabbit}/blockface/'
    raw_bf_dir = f'/hdscratch/ucair/blockface/{rabbit}/'

    block_list = sorted(glob.glob(f'{raw_mic_dir}/*'))

    # for block_path in block_list:
    #     block = block_path.split('/')[-1]
    #
    #     mic_list = sorted(glob.glob(f'{block_path}/raw/*_image.tif'))
    #
    #     img_nums = [x.split('/')[-1].split('_')[1] for x in mic_list]
    #
    #     # Load the image
    #     for img in img_nums:
    #         print(f'Processing {block}, {img} ... ', end='')
    #         mic_file = f'{raw_mic_dir}{block}/hdf5/{block}_img{img}_image.hdf5'
    #
    #         mic = io.LoadITKFile(f'{raw_mic_dir}{block}/raw/IMG_{img}_histopathology_image.tif')
    #
    #         with h5py.File(mic_file, 'w') as f:
    #             g = f.create_group('RawImage')
    #             g.create_dataset('ImageData', data=mic.data.numpy())
    #
    #         print('Done')

    for block_path in block_list:
        block = block_path.split('/')[-1]

        mic_list = sorted(glob.glob(f'{block_path}/raw/*_image.tif'))

        img_nums = [x.split('/')[-1].split('_')[1] for x in mic_list]

        for img in img_nums:

            mic_file = f'{raw_mic_dir}{block}/hdf5/{block}_img{img}_image.hdf5'
            mic_seg = f'{raw_mic_dir}{block}/hdf5/{block}_img{img}_label.hdf5'
            blockface_image = f'{bf_dir}{block}/volumes/raw/difference/IMG_{img}_difference.mhd'
            blockface_label = f'{bf_dir}{block}/volumes/raw/segmentation/IMG_{img}_segmentation.mhd'

            meta_dict = {}
            with h5py.File(mic_file, 'r') as f:
                for key in f['RawImage'].attrs:
                    meta_dict[key] = f['RawImage'].attrs[key]

            if 'Affine' in meta_dict.keys():
                continue

            blockface = io.LoadITKFile(blockface_image, device=device)
            label_data = io.LoadITKFile(blockface_label, device=device)

            blockface = (blockface - blockface.min()) / (blockface.max() -
                                                         blockface.min())
            label = blockface.clone()
            label.data = label_data.data.clone()

            print(f'Affine Registering ... ')
            aff_mic, aff_mic_seg, affine = tools.process_mic(mic_file,
                                                             mic_seg,
                                                             blockface,
                                                             label,
                                                             device=device)
            print(f'Done')

            aff_mic *= aff_mic_seg
            blockface *= label

            blockface_s = core.StructuredGrid.FromGrid(
                blockface, tensor=blockface[0].unsqueeze(0), channels=1)
            aff_mic = (aff_mic - aff_mic.min()) / (aff_mic.max() -
                                                   aff_mic.min())

            print(f'Deformable Registering Labels ... ')
            def_label, label_deformation = match_bf_mic(aff_mic_seg,
                                                        label,
                                                        steps=[0.01, 0.005],
                                                        scales=[4, 1],
                                                        gauss=True)
            print(f'Done')

            label_def_mic = so.ApplyGrid(label_deformation,
                                         device=device)(aff_mic,
                                                        label_deformation)

            print(f'Deformable Registering Images ... ')
            def_image, image_deformation = match_bf_mic(
                label_def_mic,
                blockface_s,
                steps=[0.01, 0.01],
                scales=[2, 1],
            )
            print(f'Done')

            composer = so.ComposeGrids(device=device,
                                       dtype=torch.float32,
                                       padding_mode='border')
            deformation = composer([image_deformation, label_deformation])

            def_mic = so.ApplyGrid(deformation, device=device)(aff_mic,
                                                               deformation)

            try:
                with h5py.File(mic_file, 'r') as f:
                    mic = f['ImageData'][:]
            except KeyError:
                with h5py.File(mic_file, 'r') as f:
                    mic = f['RawImage/ImageData'][:]

            mic = core.StructuredGrid(mic.shape[1:],
                                      tensor=torch.tensor(mic,
                                                          dtype=torch.float32,
                                                          device=device),
                                      device=device,
                                      dtype=torch.float32,
                                      channels=3)

            print('Saving ... ')

            with h5py.File(mic_file, 'w') as f:
                g = f.create_group('RawImage')
                d = f.create_group('Deformation')
                g.create_dataset('ImageData', data=mic.data.cpu().numpy())
                d.create_dataset('Phi', data=deformation.data.cpu().numpy())
                g.attrs['Shape'] = list(mic.shape())
                g.attrs['Spacing'] = mic.spacing.tolist()
                g.attrs['Origin'] = mic.origin.tolist()
                g.attrs['Affine'] = affine.tolist()
                d.attrs['Shape'] = list(deformation.shape())
                d.attrs['Spacing'] = deformation.spacing.tolist()
                d.attrs['Origin'] = deformation.origin.tolist()

            io.SaveITKFile(
                def_mic,
                f'{raw_mic_dir}{block}/volume/images/IMG_{img}_def_histopathology.mhd'
            )

            print('Done')

            plt.close('all')

    print('All Done')
def tempRecon(Obj, opt):

    if not os.path.exists(f'{Obj.rabbitDirectory}/rawVolumes/TemperatureRecon/'):
        os.makedirs(f'{Obj.rabbitDirectory}/rawVolumes/TemperatureRecon/')
        size, orgn = _convert_mat_files(Obj)

        unionOrigin = np.min(orgn, 0).tolist()
        adj = np.abs(np.max(orgn, 0) - np.min(orgn, 0))
        unionSize = (np.max(size, 0) + adj).tolist()
        unionSize = [int(x) for x in unionSize]

    # We are going to create a config file for each registration
    sonicationList = natural_sort(glob.glob(Obj.rabbitDirectory + '/rawVolumes/TemperatureRecon/*'))

    # Need to remove the resample from the list
    sonicationList = [x for x in sonicationList if '_resample' not in x]
    sonicationList = [x for x in sonicationList if 'RegVols' not in x]

    lastName = sonicationList[-1].split('/')[-1]
    preLength = len(lastName.split('_')[0])
    lastName = lastName[:preLength] + '_----' + lastName[preLength:]

    # Set up the Config directory
    if not os.path.exists(Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/'):
        os.makedirs(Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/')

    # Construct teh common Grid: at this point assuming isotropic spacing of 1
    if 'unionSize' in locals():
        unionSpacing = [1.0, 1.0, 1.0]
        unionIm = core.StructuredGrid(
            size=unionSize,
            origin=unionOrigin,
            spacing=unionSpacing,
            channels=1,
            device=device
        )
        def_im = unionIm.clone()

    else:
        configList = glob.glob(Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/*')
        tmpObj = Config.Load(TempConfigSpec, configList[0])
        unionSize = tmpObj.unionSize
        unionOrigin = tmpObj.unionOrigin
        unionSpacing = tmpObj.unionSpacing
        unionIm = core.StructuredGrid(
            size=unionSize,
            origin=unionOrigin,
            spacing=unionSpacing,
            channels=1,
            device=device
        )
        def_im = unionIm.clone()

    # We need to register the last image to the VIBE
    son = sonicationList[-1]
    try:
        regObj = Config.Load(TempConfigSpec,
                             Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/{0}_config.yaml'.format(
                                 son.split('/')[-1]))
    except IOError:
        regObj = Config.SpecToConfig(TempConfigSpec)
        regObj.Niter = [40]
        regObj.gaussSigma = [0.1]
        regObj.gaussKernel = [3]
        regObj.regWeight = [2.0]
        regObj.stepSize = [0.004]

        regObj.I0 = 'None'
        regObj.I1 = 'None'
        regObj.unionSize = unionSize
        regObj.unionSpacing = unionSpacing
        regObj.unionOrigin = unionOrigin

    # Need to get the name of the volume
    outName = son.split('/')[-1]
    preLength = len(outName.split('_')[0])
    outName = outName[:preLength] + '_----' + outName[preLength:]

    regObj.outputPath = Obj.rabbitDirectory + '/elastVolumes/TemperatureRecon/' + son.split('/')[-1]

    if not os.path.exists(regObj.outputPath):
        os.makedirs(regObj.outputPath)

    plt.close('all')
    # Get the deformation field that takes the first of the sonication images to the final
    h_post = ER.MultiscaleElast(regObj, opt)
    io.SaveITKFile(h_post, regObj.outputPath + '/final_deformation_Is_to_It.mha')
    rc.WriteConfig(TempConfigSpec, regObj,
                   Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/{0}_config.yaml'.format(son.split('/')[-1]))

    print('Applying elast transformation to {0} volumes .... '.format(son.split('/')[-1]), end='')
    sys.stdout.flush()

    for image in glob.glob('{0}/rawVolumes/TemperatureRecon/'.format(Obj.rabbitDirectory) + son.split('/')[-1] + '/*'):
        # Update the name
        outName = image.split('/')[-1]
        outName = outName[:preLength + 4] + 'e' + outName[preLength + 5:]

        im = io.LoadITKFile(image, device=device)
        temp = so.ResampleWorld.Create(unionIm, device=device)(im)
        def_im = so.ApplyGrid.Create(h_post, device=device)(temp)
        io.SaveITKFile(def_im, regObj.outputPath + '/' + outName)

    # common.DebugHere()

    # # Need to resample the final image onto the new grid
    # for image in glob.glob('{0}/rawVolumes/TemperatureRecon/'.format(Obj.rabbitDirectory) + sonicationList[-1].split('/')[-1] + '/*'):

    # 	outputPath = Obj.rabbitDirectory + '/rawVolumes/TemperatureRecon/' + sonicationList[-1].split('/')[-1] + '_resample'

    # 	if not os.path.exists(outputPath):
    # 		os.makedirs(outputPath)

    # 	outName = image.split('/')[-1]
    # 	im = common.LoadITKImage(image, ca.MEM_DEVICE)

    # 	cc.ResampleWorld(unionIm, im, bg=3)
    # 	common.SaveITKImage(unionIm, outputPath + '/' + outName)

    for son in sonicationList[:-1]:

        # Create the registration object for elastic
        try:
            regObj = Config.Load(TempConfigSpec,
                                 Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/{0}_config.yaml'.format(
                                     son.split('/')[-1]))
        except IOError:
            regObj = Config.SpecToConfig(TempConfigSpec)

        # Need to get the name of the volume
        outName = son.split('/')[-1]
        preLength = len(outName.split('_')[0])
        outName = outName[:preLength] + '_----' + outName[preLength:]

        # Always set the target image to the last file - have to get the first mag image!
        regObj.I0 = son + '/../RegVols/' + outName[0:5] + '.nii.gz'

        # Do we have to get the file that has been registered to the vibe??
        regObj.I1 = sonicationList[-1] + '/../RegVols/' + lastName[0:5] + '.nii.gz'

        # Set the grid parameters of the unionFOV
        regObj.unionSize = unionSize
        regObj.unionSpacing = unionSpacing
        regObj.unionOrigin = unionOrigin

        # if sonicationList.index(son) < 8:
        # 	regObj.stepSize = [0.000]
        # else:
        # 	regObj.stepSize = [0.004]

        regObj.outputPath = Obj.rabbitDirectory + '/elastVolumes/TemperatureRecon/' + son.split('/')[-1]

        if not os.path.exists(regObj.outputPath):
            os.makedirs(regObj.outputPath)

        plt.close('all')
        # Get the deformation field that takes the first of the sonication images to the final
        h = ER.MultiscaleElast(regObj, opt)

        # Need to compose the h field to get the full deformation
        h_comp = so.ComposeGrids.Create(device=device)([h, h_post])
        io.SaveITKFile(h_comp, regObj.outputPath + '/final_deformation_Is_to_It.mha')

        # Write out the config file
        if not os.path.exists(Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs'):
            os.makedirs(Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs')

        rc.WriteConfig(TempConfigSpec, regObj,
                       Obj.rabbitDirectory + '/ConfigFiles/temperatureConfigs/{0}_config.yaml'.format(
                           son.split('/')[-1]))

        # Need to itterate through all the mag and phase images and apply the deformation
        print('Applying elast transformation to {0} volumes .... '.format(son.split('/')[-1]), end='')
        sys.stdout.flush()

        for image in glob.glob(
                '{0}/rawVolumes/TemperatureRecon/'.format(Obj.rabbitDirectory) + son.split('/')[-1] + '/*'):
            # Update the name
            outName = image.split('/')[-1]
            outName = outName[:preLength + 4] + 'e' + outName[preLength + 5:]

            im = io.LoadITKFile(image, device=device)
            temp = so.ResampleWorld.Create(unionIm, device=device)(im)
            def_im = so.ApplyGrid.Create(h_post, device=device)(temp)
            io.SaveITKFile(def_im, regObj.outputPath + '/' + outName)
Ejemplo n.º 13
0
def eval_R1(rabbit_list):
    def_diff = []
    aff_diff = []
    print('Eval R1:')

    for r in rabbit_list:
        print(f'Processing Rabbit {r} ... ', end='')
        in_path = f'/hdscratch/ucair/{r}/'
        if r == '18_047':
            in_path = f'/hdscratch2/{r}/'
        block_list = sorted(glob.glob(f'{in_path}/blockface/block*'))
        for b_path in block_list:
            b = b_path.split('/')[-1]
            lm_list = sorted(
                glob.glob(f'{in_path}/microscopic/{b}/landmarks/R1*'))
            if not lm_list:
                continue
            for lm in lm_list:
                i = lm.split('_')[6]

                r_img = io.LoadITKFile(
                    f'{in_path}microscopic/{b}/segmentations/IMG_{i}/img_{i}_red.nii.gz',
                    device=device)

                def_dir = f'{in_path}microscopic/{b}/deformations/'
                # Load the affine
                aff = np.loadtxt(
                    glob.glob(f'{def_dir}img_{i}_affine_to_blockface.txt')[0])
                aff = torch.tensor(aff, device=device, dtype=torch.float32)

                # Load the deformation
                deformation_data = io.LoadITKFile(
                    f'{def_dir}/img_{i}_deformation_to_blockface.mhd',
                    device=device)

                deformation = core.StructuredGrid(
                    size=deformation_data.size[0:2],
                    spacing=deformation_data.spacing[1:3],
                    origin=deformation_data.origin[1:3],
                    device=deformation_data.device,
                    tensor=deformation_data.data.squeeze().permute(2, 0, 1),
                    channels=2)

                # Apply the inverse affine to the grid
                aff = aff.inverse()
                a = aff[0:2, 0:2].float()
                t = aff[-0:2, 2].float()

                aff_deformation = deformation.clone()
                aff_deformation.set_to_identity_lut_()

                deformation.data = torch.matmul(
                    a.unsqueeze(0).unsqueeze(0),
                    deformation.data.permute(list(range(1, 2 + 1)) +
                                             [0]).unsqueeze(-1))
                deformation.data = (deformation.data.squeeze() +
                                    t).permute([-1] + list(range(0, 2)))

                aff_deformation.data = torch.matmul(
                    a.unsqueeze(0).unsqueeze(0),
                    aff_deformation.data.permute(list(range(1, 2 + 1)) +
                                                 [0]).unsqueeze(-1))
                aff_deformation.data = (aff_deformation.data.squeeze() +
                                        t).permute([-1] + list(range(0, 2)))

                in_bf = f'{in_path}blockface/{b}/landmarks/'
                bf_lm = [
                    torch.tensor(np.loadtxt(
                        f'{in_bf}/R1_{r}_{b}_IMG_{i}_blockface_landmarks.txt'),
                                 device=device)
                ]

                in_mic = f'{in_path}microscopic/{b}/landmarks/'
                mic_lm = torch.tensor(np.loadtxt(
                    f'{in_mic}/R1_{r}_{b}_IMG_{i}_microscopic_landmarks.txt'),
                                      device=device)

                def_point = sample_points(deformation, bf_lm)
                aff_point = sample_points(aff_deformation, bf_lm)
                # idx_def = def_point[0]/ r_img.spacing

                aff_diff.append((mic_lm - aff_point) * 0.00176)
                def_diff.append((mic_lm - def_point) *
                                0.00176)  # spacing from histology in mm
        print('done')

    def_dist = torch.sqrt((torch.cat(def_diff, 0)**2).sum(-1))
    aff_dist = torch.sqrt((torch.cat(aff_diff, 0)**2).sum(-1))

    print('Eval R1: Done')

    return def_dist, aff_dist
Ejemplo n.º 14
0
def example():

    f = box_image(
        core.StructuredGrid((256, 256), spacing=[1.0, 1.0], device=device))
    d = box_image(core.StructuredGrid(
        (256, 256), spacing=[1.0, 1.0], device=device),
                  break_width=50,
                  val=500.0) + 0.1
    m = box_image(core.StructuredGrid((256, 256),
                                      spacing=[1.0, 1.0],
                                      device=device),
                  break_width=50,
                  val=1.0)

    f = so.Gaussian.Create(channels=1,
                           kernel_size=5,
                           sigma=2,
                           dim=2,
                           device=device)(f)
    grads = so.Gradient.Create(dim=2, device=device)(f) * m
    orig_grads = grads.copy()

    phi_inv = core.StructuredGrid((256, 256),
                                  spacing=[1.0, 1.0],
                                  device=device)
    phi_inv.set_to_identity_lut_()

    id = phi_inv.copy()

    for i in range(0, 6):

        diffuse_x_grad = grads[0].data
        diffuse_y_grad = diffuse(grads[1].data, d.data.squeeze())

        # Scale back up the gradients
        y_scale = (grads[1].max() - grads[1].min()) / (diffuse_y_grad.max() -
                                                       diffuse_y_grad.min())

        update = core.StructuredGrid.FromGrid(
            f,
            tensor=torch.stack((diffuse_x_grad, y_scale * diffuse_y_grad), 0),
            channels=2)

        sample = id.clone() + 20.0 * update
        phi_inv = so.ApplyGrid.Create(sample,
                                      pad_mode='border',
                                      device=update.device,
                                      dtype=update.dtype)(phi_inv)

        # update the gradients
        f = so.ApplyGrid.Create(phi_inv, device=device)(f)
        d = so.ApplyGrid.Create(phi_inv, device=device)(d)
        m = so.ApplyGrid.Create(phi_inv, device=device)(m)
        grads = so.Gradient.Create(dim=2, device=device)(f) * m

        print(f'Iter {i}/5 done...')

    test = so.ApplyGrid.Create(phi_inv, device=device)(f)

    plt.figure()
    plt.imshow(d.cpu())
    plt.colorbar()
    plt.title('Diffusion Coefficient')

    plt.figure()
    plt.imshow(imgout.cpu())
    plt.colorbar()
    plt.title('Diffused Gradients')
    #
    plt.figure()
    plt.imshow(grads[1].squeeze().cpu())
    plt.colorbar()
    plt.title('Starting Gradients')
    #
    # def_grid = id.copy()
    # def_grid.set_to_identity_lut_()
    # def_grid += smooth_grads
    #
    # phi_inv = so.ApplyGrid.Create(def_grid, device=device)(phi_inv)
    #
    # def_image = so.ApplyGrid.Create(phi_inv, device=device)(f)
    #
    # plt.figure()
    # plt.imshow(def_image.data.squeeze().cpu() - f.data.squeeze().cpu())
    # plt.colorbar()
    # plt.title('Difference Of Images')
    #
    # plt.figure()
    # plt.imshow(def_image.data.squeeze().cpu())
    # plt.title('Deformed Image')

    print('something')
def _convert_mat_files(Obj):
    rabbitNumber = Obj.rabbitDirectory.split('/')[-1]

    matList = sorted(glob.glob(f'{Obj.rabbitDirectory}/externalRecons/AblationImaging/*'))

    # Do some string comparison to make sure that this file is a sonication file
    matList = [x for x in matList if 'Son' in x]

    # Have to keep track of the MIN and MAX of each transfor so we can know the bounding box to resample to
    size = []
    orgn = []

    if not os.path.exists(os.path.join(Obj.rabbitDirectory + '/rawVolumes/TemperatureRecon/RegVols/')):
        os.makedirs(os.path.join(Obj.rabbitDirectory + '/rawVolumes/TemperatureRecon/RegVols/'))

    for tempFile in matList:

        # Create the output folder for all of the timepoint images
        outDir = os.path.splitext(tempFile)[0]
        outName = outDir.split('/')[-1]
        dirOutName = os.path.join(Obj.rabbitDirectory + '/rawVolumes/TemperatureRecon/', outName)
        if not os.path.exists(dirOutName):
            os.makedirs(dirOutName)

        # Have to add mroe logic here because there are varying lengths of numbers FUN
        preLength = len(outName.split('_')[0])
        outName = outName[:preLength] + '_----' + outName[preLength:]

        struct = spi.loadmat(tempFile)
        imData = struct['ims']

        # Could put some logic here to make sure that they all have a 4th dimension
        timePts = np.shape(imData)[-1]

        # Get transformation and solve for the affine
        # tform = struct['PosDCS']

        # print('min: {0} .... '.format(np.min(np.min(np.min(tform, 0), 0), 0).tolist()))
        # print('max: {0} .... '.format(np.max(np.max(np.max(tform, 0), 0), 0).tolist()))

        # dim = np.shape(tform)[0:3]
        # dim = [x - 1 for x in dim]

        # print('shape: {0} .... '.format(dim))

        # Pull points from the transformation to solve for the affine
        # landmarks = []
        # landmarks.append([[0, 0, 0], tform[0, 0, 0].tolist()])
        # landmarks.append([[dim[0], 0, 0], tform[dim[0], 0, 0].tolist()])
        # landmarks.append([[0, dim[1], 0], tform[0, dim[1], 0].tolist()])
        # landmarks.append([[dim[0], dim[1], 0], tform[dim[0], dim[1], 0].tolist()])
        # landmarks.append([[0, 0, dim[2]], tform[0, 0, dim[2]].tolist()])
        # landmarks.append([[dim[0], 0, dim[2]], tform[dim[0], 0, dim[2]].tolist()])
        # landmarks.append([[0, dim[1], dim[2]], tform[0, dim[1], dim[2]].tolist()])
        # landmarks.append([[dim[0], dim[1], dim[2]], tform[dim[0], dim[1], dim[2]].tolist()])

        # Solve for the affine
        # affine = apps.SolveAffine(landmarks)
        affine = struct['geomInfo'][0,0]['AffineDCS']

        temp = core.StructuredGrid(
            [imData.shape[0], imData.shape[1], imData.shape[2]],
            tensor=torch.tensor(np.real(imData)).permute(-1, 0, 1, 2),
            origin= [0, 0, 0],
            channels=imData.shape[-1]
        )

        # temp = ca.Image3D(cc.MakeGrid(np.shape(tform)[0:3], ca.MEM_DEVICE), ca.MEM_DEVICE)
        # temp.setOrigin(ca.Vec3Df(0, 0, 0))
        # temp.setSpacing(ca.Vec3Df(1, 1, 1))

        affGrid = rc.SolveAffineGrid(temp, affine)

        size.append(affGrid.size.tolist())
        orgn.append(affGrid.origin.tolist())

        print('Converting files for {0} time series images .... '.format(timePts), end='')
        sys.stdout.flush()
        for time in range(0, timePts):

            magIm_np = np.real(imData[:, :, :, time])
            phsIm_np = np.imag(imData[:, :, :, time])

            magIm = core.StructuredGrid(
                [magIm_np.shape[0], magIm_np.shape[1], magIm_np.shape[2]],
                tensor=torch.tensor(magIm_np).unsqueeze(0).float(),
                origin=[0, 0, 0],
                channels=1
            )
            phsIm = core.StructuredGrid(
                [phsIm_np.shape[0], phsIm_np.shape[1], phsIm_np.shape[2]],
                tensor=torch.tensor(phsIm_np).unsqueeze(0).float(),
                origin=[0, 0, 0],
                channels=1
            )

            affFilt = so.AffineTransform.Create(affine=torch.tensor(affine).float())
            affMagIm = affFilt(magIm, out_grid=affGrid)
            affPhsIm = affFilt(phsIm, out_grid=affGrid)

            io.SaveITKFile(affMagIm, dirOutName + '/' + outName + '_real_{0}.nii.gz'.format(str(time).zfill(2)))
            io.SaveITKFile(affPhsIm, dirOutName + '/' + outName + '_imag_{0}.nii.gz'.format(str(time).zfill(2)))

            if time == 0:
                # We need to have the magnitude image for registration
                regIm_np = np.abs(imData[:, :, :, time])
                regIm = core.StructuredGrid(
                    [regIm_np.shape[0], regIm_np.shape[1], regIm_np.shape[2]],
                    tensor=torch.tensor(regIm_np).unsqueeze(0).float(),
                    origin=[0, 0, 0],
                    channels=1
                )
                affRegIm = affFilt(regIm, out_grid=affGrid)
                io.SaveITKFile(affRegIm, dirOutName + '/../RegVols/' + outName[0:5] + '.nii.gz')

        # print('size: {0} .... '.format(magIm_np.shape), end='')
        print('Done')

    return size, orgn
def sample_on_histopathology(rabbit, block, img_num, bf_slice):

    blockface_dir = f'/hdscratch/ucair/{rabbit}/blockface/{block}/'
    histology_dir = f'/hdscratch/ucair/{rabbit}/microscopic/{block}/'
    invivo_dir = f'/hdscratch/ucair/{rabbit}/mri/invivo/volumes/deformable/{block}/'
    day0_dir = f'/hdscratch/ucair/{rabbit}/mri/day0/volumes/deformable/{block}/'
    invivo_mr_out_path = f'{invivo_dir}/IMG_{img_num}/'
    day0_mr_out_path = f'{day0_dir}/IMG_{img_num}/'

    mic_file = f'{histology_dir}hdf5/{block}_img{img_num}_image.hdf5'

    # First need to see if the deformation from histology to blockface exists
    # Load the deformation
    try:
        phi_inv_data = io.LoadITKFile(
            f'{histology_dir}deformations/img_{img_num}_deformation_to_blockface.mhd', device=device
        )
        aff = np.loadtxt(f'{histology_dir}deformations/img_{img_num}_affine_to_blockface.txt')
        aff = torch.tensor(aff, device=device, dtype=torch.float32)
    except IOError:
        raise IOError(f'The full deformation for IMG {img_num} was not found. Please generate and then re-run.')

    # Because I can't save 2D deformations at the moment
    phi_inv = core.StructuredGrid(
        size=phi_inv_data.size[0:2],
        spacing=phi_inv_data.spacing[1:3],
        origin=phi_inv_data.origin[1:3],
        device=phi_inv_data.device,
        tensor=phi_inv_data.data.squeeze().permute(2, 0, 1),
        channels=2
    )

    # Apply the inverse affine to the deformation
    aff = aff.inverse()
    a = aff[0:2, 0:2].float()
    t = aff[-0:2, 2].float()

    phi_inv.data = torch.matmul(a.unsqueeze(0).unsqueeze(0),
                                phi_inv.data.permute(list(range(1, 2 + 1)) + [0]).unsqueeze(-1))
    phi_inv.data = (phi_inv.data.squeeze() + t).permute([-1] + list(range(0, 2)))

    if not os.path.exists(invivo_mr_out_path):
        os.makedirs(invivo_mr_out_path)

    if not os.path.exists(day0_mr_out_path):
        os.makedirs(day0_mr_out_path)

    meta_dict = {}
    with h5py.File(mic_file, 'r') as f:
        mic = f['RawImage/ImageData'][:, ::10, ::10]
        for key in f['RawImage'].attrs:
            meta_dict[key] = f['RawImage'].attrs[key]

    mic = core.StructuredGrid(
        mic.shape[1:],
        tensor=torch.tensor(mic, dtype=torch.float32, device=device),
        spacing=torch.tensor([10.0, 10.0], dtype=torch.float32, device=device),
        origin=(torch.tensor(mic.shape[1:]) / 2) * -1,
        device=device,
        dtype=torch.float32,
        channels=3
    )

    mic = (mic - mic.min()) / (mic.max() - mic.min())

    segs = []
    segs += [io.LoadITKFile(f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_healthy_tissue.nrrd',
                            device=device)]
    if os.path.exists(f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_uncertain_region.nrrd'):
        segs += [io.LoadITKFile(f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_uncertain_region.nrrd',
                                device=device)]
    if os.path.exists(f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_ablated_region.nrrd'):
        segs += [io.LoadITKFile(f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_ablated_region.nrrd',
                                device=device)]

    # Apply the deformation to the microscopic image
    deformed_histology = so.ApplyGrid(phi_inv, device=device)(mic, phi_inv)
    for i, vol in enumerate(segs):
        segs[i] = so.ApplyGrid(phi_inv, device=device)(vol, phi_inv)

    # Load the blockface
    blockface = io.LoadITKFile(f'{blockface_dir}volumes/raw/difference_volume.mhd', device=device)

    sd = 'cuda:0'

    mr_invivo_t1_slice = get_mr_slice(f'{invivo_dir}/invivo_ce_t1_to_{block}.mhd', blockface, bf_slice - 1, sd)
    # mr_invivo_t2_slice = get_mr_slice(f'{invivo_dir}/invivo_t2_to_{block}.mhd', blockface, bf_slice - 1, sd)
    # mr_invivo_adc_slice = get_mr_slice(f'{invivo_dir}/invivo_adc_to_{block}.mhd', blockface, bf_slice - 1, sd)
    mr_invivo_npv_slice = get_mr_slice(f'{invivo_dir}/invivo_npv_to_{block}.mhd', blockface, bf_slice - 1, sd)
    mr_d0_npv_slice = get_mr_slice(f'/hdscratch/ucair/18_062/mri/day0/volumes/deformable/block04/day0_npv_to_{block}.mhd', blockface, bf_slice - 1, sd)
    mr_d0_t1_slice = get_mr_slice(
        f'/hdscratch/ucair/18_062/mri/day0/volumes/deformable/block04/day0_t1_to_{block}.mhd', blockface, bf_slice - 1,
        sd)
    mr_d0_t1_nc_slice = get_mr_slice(
        f'/hdscratch/ucair/18_062/mri/day0/volumes/deformable/block04/day0_t1_nc_to_{block}.mhd', blockface, bf_slice - 1,
        sd)
    mr_log_ctd_slice = get_mr_slice(
        f'/hdscratch/ucair/18_062/mri/day0/volumes/deformable/block04/day0_log_ctd_to_{block}.mhd', blockface, bf_slice - 1,
        sd)
    mr_log_ctd_slice.data = torch.exp(mr_log_ctd_slice.data)

    def create_circular_mask(h, w, center=None, radius=None):

        if center is None:  # use the middle of the image
            center = (int(w / 2), int(h / 2))
        if radius is None:  # use the smallest distance between the center and image walls
            radius = min(center[0], center[1], w - center[0], h - center[1])

        Y, X = np.ogrid[:h, :w]
        dist_from_center = np.sqrt((X - center[0]) ** 2 + (Y - center[1]) ** 2)

        mask = dist_from_center <= radius
        return mask

    circle_mask = create_circular_mask(2586, 3426, center=[1831, 1100], radius=700)
    mr_log_ctd_slice.data = mr_log_ctd_slice.data * torch.tensor(circle_mask, device=device).float()
    # mr_day0_t2_slice = get_mr_slice(f'{day0_dir}/day0_t2_to_{block}.mhd', blockface, bf_slice - 1, sd)
    # mr_day0_ctd_slice = get_mr_slice(f'{day0_dir}/day0_ctd_to_{block}.mhd', blockface, bf_slice - 1, sd)
    # mr_day0_t1_slice = get_mr_slice(f'{day0_dir}/day0_ce_t1_to_{block}.mhd', blockface, bf_slice - 1, sd)
    # mr_day0_npv_slice = get_mr_slice(f'{day0_dir}/day0_npv_to_{block}.mhd', blockface, bf_slice - 1, sd)

    # io.SaveITKFile(mr_invivo_t1_slice, f'{invivo_mr_out_path}/invivo_ce_t1_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_invivo_t2_slice, f'{invivo_mr_out_path}/invivo_t2_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_invivo_adc_slice, f'{invivo_mr_out_path}/invivo_adc_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_invivo_npv_slice, f'{invivo_mr_out_path}/invivo_npv_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_day0_t2_slice, f'{day0_mr_out_path}/day0_t2_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_day0_ctd_slice, f'{day0_mr_out_path}/day0_ctd_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_day0_t1_slice, f'{day0_mr_out_path}/day0_ce_t1_as_bf_img_{img_num}.mhd')
    # io.SaveITKFile(mr_day0_npv_slice, f'{day0_mr_out_path}/day0_ce_t1_as_bf_img_{img_num}.mhd')

    del blockface, phi_inv, phi_inv_data
    torch.cuda.empty_cache()

    histology_seg = core.StructuredGrid.FromGrid(segs[0], channels=1)
    for seg in segs:
        histology_seg += seg

    ctd_slice = mr_log_ctd_slice.data[0].cpu()
    ctd_mask = np.logical_and(ctd_slice > 10.0, circle_mask == 1)
    masked_thermal = np.ma.masked_where(ctd_mask == 0.0, ctd_slice.numpy()).squeeze()
    plt.figure()
    # plt.imshow(t1_nc.data.cpu()[0, slice_n].squeeze(), aspect=1.0 / aspect, cmap='gray')
    plt.imshow(masked_thermal, cmap='jet', vmin=10, vmax=240)
    plt.gca().patch.set_facecolor([0, 0, 0, 0])
    plt.axis('off')

    zero_slice = np.zeros_like(ctd_slice)
    masked_slice = np.ma.masked_where(zero_slice == 0.0, zero_slice).squeeze()
    plt.figure()
    plt.imshow(masked_slice.squeeze(), cmap='gray')
    npv_contours = measure.find_contours(ctd_slice.data.squeeze().cpu().numpy() * circle_mask, 240)
    for contour in npv_contours:
        plt.plot(contour[:, 1], contour[:, 0], color='red', linewidth=1.8)
    plt.axis('off')
    plt.gca().patch.set_facecolor([0, 0, 0, 0])
    plt.savefig(f'{invivo_mr_out_path}/day0_ctd_contour.png', dpi=600, bbox_inches='tight', pad_inches=0, transparent=True)
    save = True

    # Generate the figures without masking
    generate_figures(
        mr_d0_t1_slice, segs, out_path=invivo_mr_out_path, base_name='day0_ce_t1_no_mask', save=save
    )

    generate_figures(
        mr_invivo_t1_slice, segs, out_path=invivo_mr_out_path, base_name='deformed_invivo_ce_t1_MR_no_mask', save=save
    )

    histology_image = histology_seg * deformed_histology
    mr_invivo_t1_slice = histology_seg * mr_invivo_t1_slice
    mr_d0_t1_slice = histology_seg * mr_d0_t1_slice
    # mr_invivo_t2_slice = histology_seg * mr_invivo_t2_slice
    # mr_day0_t2_slice = histology_seg * mr_day0_t2_slice
    # mr_day0_ctd_slice = histology_seg * mr_day0_ctd_slice
    # mr_day0_t1_slice = histology_seg * mr_day0_t1_slice
    # mr_day0_npv_slice = histology_seg * mr_day0_npv_slice

    # mr_day0_ctd_slice.data[mr_day0_ctd_slice.data < 0.5] = 0.0
    # mr_day0_ctd_slice.data[mr_day0_ctd_slice.data >= 0.5] = 1.0
    #
    # mr_day0_npv_slice.data[mr_day0_npv_slice.data < 0.5] = 0.0
    # mr_day0_npv_slice.data[mr_day0_npv_slice.data >= 0.5] = 1.0

    hist_map = core.StructuredGrid.FromGrid(segs[0])
    for i, seg in enumerate(segs, 1):
        hist_map = hist_map + (i * seg)

    if len(segs) == 3:
        color_map = ListedColormap(['k', 'crimson', 'lime', 'gold'])
        plt.figure()
        plt.imshow(hist_map.data.squeeze().cpu(), cmap=color_map)

    elif len(segs) == 2:
        color_map = ListedColormap(['k', 'crimson', 'lime'])
        plt.figure()
        plt.imshow(hist_map.data.squeeze().cpu(), cmap=color_map)

    else:
        color_map = ListedColormap(['k', 'crimson'])
        plt.figure()
        plt.imshow(hist_map.data.squeeze().cpu(), cmap=color_map)
    plt.axis('off')
    plt.show()
    plt.pause(1.0)


    if save:
        plt.savefig(f'{invivo_mr_out_path}/histology_segmentation_map.png', dpi=600, bbox_inches='tight', pad_inches=0)
        plt.savefig(f'{day0_mr_out_path}/histology_segmentation_map.png', dpi=600, bbox_inches='tight', pad_inches=0)

    plt.close('all')

    # Generate the figure for showing the NPV on the Day0 MRI CE T1
    # contours = measure.find_contours(mr_day0_npv_slice.data.squeeze().cpu().numpy(), 0.5)


    # Plot the image with contours
    # plt.figure()
    # plt.imshow(mr_day0_t1_slice.data.permute(1, 2, 0).squeeze().cpu(), cmap='gray')
    # for contour in contours:
    #     plt.plot(contour[:, 1], contour[:, 0], color='blue', linewidth=0.8)
    # plt.axis('off')
    # plt.show()
    # plt.pause(1.0)
    # if save:
    #     plt.savefig(f'{invivo_mr_out_path}/day0_npv_with_contours.png', dpi=600, bbox_inches='tight', pad_inches=0)
    #
    # plt.close('all')

    # generate_figures(
    #     mr_day0_npv_slice, segs, out_path=day0_mr_out_path, base_name='deformed_npv', save=save,
    #     extra_cont=contours
    # )

    generate_figures(
        histology_image, segs, out_path=invivo_mr_out_path, base_name='deformed_histology', save=save
    )

    generate_figures(
        mr_invivo_t1_slice, segs, out_path=invivo_mr_out_path, base_name='deformed_invivo_ce_t1_MR', save=save
    )
    generate_figures(
        mr_d0_t1_slice, segs, out_path=invivo_mr_out_path, base_name='day0_ce_t1', save=save
    )

    # generate_figures(
    #     mr_invivo_t2_slice, segs, out_path=invivo_mr_out_path, base_name='deformed_invivo_t2_MR', save=save
    # )

    # generate_figures(
    #     mr_invivo_adc_slice, segs, out_path=invivo_mr_out_path, base_name='deformed_invivo_adc_MR', save=save
    # )

    # generate_figures(
    #     mr_day0_t2_slice, segs, out_path=day0_mr_out_path, base_name='deformed_day0_t2_MR', save=save
    # )

    # generate_figures(
    #     mr_day0_ctd_slice, segs, out_path=day0_mr_out_path, base_name='deformed_day0_ctd_MR', save=save
    # )
    #
    # generate_figures(
    #     mr_day0_t1_slice, segs, out_path=day0_mr_out_path, base_name='deformed_day0_ce_t1_MR', save=True
    # )
    npv_contours = measure.find_contours(mr_invivo_npv_slice.data.squeeze().cpu().numpy(), 0.5)
    zero_im = np.zeros_like(mr_invivo_npv_slice.data.squeeze().cpu().numpy())
    fig = plt.figure()
    # plt.imshow(mr_invivo_t1_slice.data.cpu().squeeze())
    ax = fig.add_subplot()
    ax.set_xlim([0, zero_im.shape[1]])
    ax.set_ylim([0, zero_im.shape[0]])
    for contour in npv_contours:
        plt.plot(contour[:, 1], contour[:, 0], color=matplotlib._cm._tab10_data[2], linewidth=3.0)
    ax.invert_yaxis()
    ax.set_aspect(1)
    plt.axis('off')
    plt.savefig(f'{invivo_mr_out_path}/NPV_contours.png', dpi=600, bbox_inches='tight', pad_inches=0, transparent=True)

    npv_contours = measure.find_contours(mr_d0_npv_slice.data.squeeze().cpu().numpy(), 0.5)
    zero_im = np.zeros_like(mr_d0_npv_slice.data.squeeze().cpu().numpy())
    fig = plt.figure()
    # plt.imshow(mr_invivo_t1_slice.data.cpu().squeeze())
    ax = fig.add_subplot()
    ax.set_xlim([0, zero_im.shape[1]])
    ax.set_ylim([0, zero_im.shape[0]])
    for contour in npv_contours:
        plt.plot(contour[:, 1], contour[:, 0], color=matplotlib._cm._tab10_data[0], linewidth=3.0)
    ax.invert_yaxis()
    ax.set_aspect(1)
    plt.axis('off')
    plt.savefig(f'{invivo_mr_out_path}/D0_NPV_contours.png', dpi=600, bbox_inches='tight', pad_inches=0, transparent=True)

    if len(segs) == 3:
        hst_contours = measure.find_contours(segs[-1].data.squeeze().cpu().numpy(), 0.5)
        fig = plt.figure()
        ax = fig.add_subplot()
        ax.set_xlim([0, zero_im.shape[1]])
        ax.set_ylim([0, zero_im.shape[0]])
        for contour in hst_contours:
            plt.plot(contour[:, 1], contour[:, 0], color=matplotlib._cm._tab10_data[6], linewidth=3.0)
        ax.invert_yaxis()
        ax.set_aspect(1)
        plt.axis('off')

        plt.savefig(f'{invivo_mr_out_path}/HST_contours.png', dpi=600, bbox_inches='tight', pad_inches=0, transparent=True)

    plt.close('all')
    print('Done')
Ejemplo n.º 17
0
def generate_image_volume(rabbit, block, base_dir='/hdscratch/ucair/'):
    blockface_dir = f'{base_dir}{rabbit}/blockface/{block}/'
    histology_dir = f'{base_dir}{rabbit}/microscopic/{block}/'
    def_dir = f'{histology_dir}deformations/'

    out_dir = f'{histology_dir}/volume/raw/'

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    raw_images = glob.glob(f'{histology_dir}/raw/*_image.tif')
    if not raw_images:
        raw_images += sorted(raw_images +
                             glob.glob(f'{histology_dir}/raw/*_image.jpg'))
    image_nums = sorted(
        [int(x.split('/')[-1].split('_')[1]) for x in raw_images])

    deformed_images = []

    for im in image_nums:

        print(f'Loading and deforming image {im} ... ', end='')

        # Load the healthy segmentation as a reference
        healthy = io.LoadITKFile(
            f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_healthy_tissue.nrrd',
            device=device)
        try:
            ablation = io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_ablated_region.nrrd',
                device=device)
        except RuntimeError:
            ablation = (healthy * 0.0).copy()

        try:
            transition = io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_uncertain_region.nrrd',
                device=device)
        except RuntimeError:
            transition = (healthy * 0.0).copy()

        combined = ablation + transition + healthy
        combined.data = (combined.data >= 0.5).float()

        # Load the affine
        aff = np.loadtxt(
            glob.glob(f'{def_dir}img_{im:03d}_affine_to_blockface.txt')[0])
        aff = torch.tensor(aff, device=device, dtype=torch.float32)

        # Load the deformation
        deformation_data = io.LoadITKFile(
            f'{def_dir}/img_{im:03d}_deformation_to_blockface.mhd',
            device=device)

        deformation = core.StructuredGrid(
            size=deformation_data.size[0:2],
            spacing=deformation_data.spacing[1:3],
            origin=deformation_data.origin[1:3],
            device=deformation_data.device,
            tensor=deformation_data.data.squeeze().permute(2, 0, 1),
            channels=2)

        # Apply the inverse affine to the grid
        aff = aff.inverse()
        a = aff[0:2, 0:2].float()
        t = aff[-0:2, 2].float()

        deformation.data = torch.matmul(
            a.unsqueeze(0).unsqueeze(0),
            deformation.data.permute(list(range(1, 2 + 1)) +
                                     [0]).unsqueeze(-1))
        deformation.data = (deformation.data.squeeze() +
                            t).permute([-1] + list(range(0, 2)))

        # Load the actual image
        #### Apply the affine to the image
        mic_file = f'{histology_dir}hdf5/{block}_img{im:03d}_image.hdf5'

        meta_dict = {}
        with h5py.File(mic_file, 'r') as f:
            mic = f['RawImage/ImageData'][:, ::10, ::10]
            for key in f['RawImage'].attrs:
                meta_dict[key] = f['RawImage'].attrs[key]

        mic = core.StructuredGrid(mic.shape[1:],
                                  tensor=torch.tensor(mic,
                                                      dtype=torch.float32,
                                                      device=device),
                                  spacing=torch.tensor([10.0, 10.0],
                                                       dtype=torch.float32,
                                                       device=device),
                                  device=device,
                                  dtype=torch.float32,
                                  channels=3)

        mic = (mic - mic.min()) / (mic.max() - mic.min())
        mic.data = mic.data * combined.data

        def_mic = so.ApplyGrid.Create(deformation, device=device)(mic,
                                                                  deformation)

        # Need to put the mic image in the right slice
        z_or = (im - 1) * 0.05
        def_mic = core.StructuredGrid(
            [2] + list(def_mic.shape()[1:]),
            tensor=def_mic.data.unsqueeze(1).repeat(1, 2, 1, 1),
            spacing=torch.tensor(
                [0.05, def_mic.spacing[0], def_mic.spacing[1]],
                dtype=torch.float32,
                device=device),
            origin=torch.tensor([z_or, def_mic.origin[0], def_mic.origin[1]],
                                dtype=torch.float32,
                                device=device),
            device=device,
            dtype=torch.float32,
            channels=3)

        deformed_images.append(def_mic.copy())

        del def_mic, mic, deformation
        torch.cuda.empty_cache()

        print('done')

    # Now need to load the blockface volume
    block_vol = io.LoadITKFile(
        f'{blockface_dir}volumes/raw/difference_volume.mhd', device='cpu')
    # image_vol = core.StructuredGrid(
    #     size=block_vol.size,
    #     spacing=block_vol.spacing,
    #     origin=block_vol.origin,
    #     device=block_vol.device,
    #     channels=3
    # )
    image_z_spacing = np.diff(np.array(image_nums)).mean() * 0.05
    image_z_origin = image_nums[0] * 0.05

    image_vol = core.StructuredGrid(
        size=[len(image_nums)] + list(block_vol.size[-2:].numpy()),
        spacing=[image_z_spacing] + list(block_vol.spacing[-2:].numpy()),
        origin=[image_z_origin] + list(block_vol.origin[-2:].numpy()),
        device=block_vol.device,
        channels=3)

    for ii, im in enumerate(image_nums):
        image_vol.data[:, ii] = deformed_images[ii].data[:, 0].clone().cpu()

    io.SaveITKFile(image_vol, f'{out_dir}/{block}_image_volume.mhd')
    del image_vol, deformed_images, block_vol
    torch.cuda.empty_cache()
Ejemplo n.º 18
0
def generate_segmentation_volume(rabbit, block, base_dir='/hdscratch/ucair/'):
    blockface_dir = f'{base_dir}{rabbit}/blockface/{block}/'
    histology_dir = f'{base_dir}{rabbit}/microscopic/{block}/'
    def_dir = f'{histology_dir}deformations/'

    out_dir = f'{histology_dir}/volume/raw/'

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    raw_images = glob.glob(f'{histology_dir}/raw/*_image.tif')
    if not raw_images:
        raw_images += sorted(raw_images +
                             glob.glob(f'{histology_dir}/raw/*_image.jpg'))
    image_nums = sorted(
        [int(x.split('/')[-1].split('_')[1]) for x in raw_images])

    deformed_ablation_segs = []
    deformed_combined_segs = []
    deformed_images = []

    for im in image_nums:

        print(f'Loading and deforming image {im} ... ', end='')

        # Load the healthy segmentation as a reference
        healthy = io.LoadITKFile(
            f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_healthy_tissue.nrrd',
            device=device)
        # Load the affine
        aff = np.loadtxt(
            glob.glob(f'{def_dir}img_{im:03d}_affine_to_blockface.txt')[0])
        aff = torch.tensor(aff, device=device, dtype=torch.float32)

        # Load the deformation
        deformation_data = io.LoadITKFile(
            f'{def_dir}/img_{im:03d}_deformation_to_blockface.mhd',
            device=device)

        deformation = core.StructuredGrid(
            size=deformation_data.size[0:2],
            spacing=deformation_data.spacing[1:3],
            origin=deformation_data.origin[1:3],
            device=deformation_data.device,
            tensor=deformation_data.data.squeeze().permute(2, 0, 1),
            channels=2)

        # Apply the inverse affine to the grid
        aff = aff.inverse()
        a = aff[0:2, 0:2].float()
        t = aff[-0:2, 2].float()

        deformation.data = torch.matmul(
            a.unsqueeze(0).unsqueeze(0),
            deformation.data.permute(list(range(1, 2 + 1)) +
                                     [0]).unsqueeze(-1))
        deformation.data = (deformation.data.squeeze() +
                            t).permute([-1] + list(range(0, 2)))

        try:
            ablation = io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_ablated_region.nrrd',
                device=device)
        except RuntimeError:
            ablation = (healthy * 0.0).copy()

        try:
            transition = io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{im:03d}/img_{im:03d}_uncertain_region.nrrd',
                device=device)
        except RuntimeError:
            transition = (healthy * 0.0).copy()

        # Load the actual image
        #### Apply the affine to the image
        mic_file = f'{histology_dir}hdf5/{block}_img{im:03d}_image.hdf5'

        meta_dict = {}
        with h5py.File(mic_file, 'r') as f:
            mic = f['RawImage/ImageData'][:, ::10, ::10]
            for key in f['RawImage'].attrs:
                meta_dict[key] = f['RawImage'].attrs[key]

        mic = core.StructuredGrid(mic.shape[1:],
                                  tensor=torch.tensor(mic,
                                                      dtype=torch.float32,
                                                      device=device),
                                  spacing=torch.tensor([10.0, 10.0],
                                                       dtype=torch.float32,
                                                       device=device),
                                  device=device,
                                  dtype=torch.float32,
                                  channels=3)

        mic = (mic - mic.min()) / (mic.max() - mic.min())

        if not os.path.exists(
                f'{histology_dir}deformable/img_{im:03d}_to_blockface/'):
            os.makedirs(
                f'{histology_dir}deformable/img_{im:03d}_to_blockface/')

        def_mic = so.ApplyGrid.Create(deformation, device=device)(mic,
                                                                  deformation)

        # Need to put the mic image in the right slice
        z_or = (im - 1) * 0.05
        def_mic = core.StructuredGrid(
            [2] + list(def_mic.shape()[1:]),
            tensor=def_mic.data.unsqueeze(1).repeat(1, 2, 1, 1),
            spacing=torch.tensor(
                [0.05, def_mic.spacing[0], def_mic.spacing[1]],
                dtype=torch.float32,
                device=device),
            origin=torch.tensor([z_or, def_mic.origin[0], def_mic.origin[1]],
                                dtype=torch.float32,
                                device=device),
            device=device,
            dtype=torch.float32,
            channels=3)

        io.SaveITKFile(
            def_mic,
            f'{histology_dir}deformable/img_{im:03d}_to_blockface/img_{im:03d}_to_blockface.mhd'
        )

        combined = ablation + transition
        combined.data = (combined.data >= 0.5).float()

        def_ablation = so.ApplyGrid.Create(deformation,
                                           device=device)(ablation,
                                                          deformation)
        def_combined = so.ApplyGrid.Create(deformation,
                                           device=device)(combined,
                                                          deformation)

        deformed_ablation_segs.append(def_ablation.copy())
        deformed_combined_segs.append(def_combined.copy())
        deformed_images.append(def_mic.copy())

        del def_ablation, def_combined, def_mic, combined, mic, deformation
        torch.cuda.empty_cache()

        print('done')

    # Now need to load the blockface volume
    block_vol = io.LoadITKFile(
        f'{blockface_dir}volumes/raw/difference_volume.mhd', device='cpu')
    image_vol = core.StructuredGrid(size=block_vol.size,
                                    spacing=block_vol.spacing,
                                    origin=block_vol.origin,
                                    device=block_vol.device,
                                    channels=3)

    for ii, im in enumerate(image_nums):
        image_vol.data[:, im - 1] = deformed_images[ii].data[:,
                                                             0].clone().cpu()

    io.SaveITKFile(image_vol, f'{out_dir}/{block}_image_volume.mhd')
    del image_vol, deformed_images
    torch.cuda.empty_cache()

    single_vol = core.StructuredGrid(size=block_vol.size,
                                     spacing=block_vol.spacing,
                                     origin=block_vol.origin,
                                     device=block_vol.device,
                                     channels=1)

    for ii, im in enumerate(image_nums):
        single_vol.data[:, im -
                        1] = deformed_ablation_segs[ii].data[:].clone().cpu()

    io.SaveITKFile(single_vol,
                   f'{out_dir}/{block}_ablation_segmentation_no_interp.mhd')

    del single_vol
    torch.cuda.empty_cache()

    # Now need to load the blockface volume
    ablation_vol = core.StructuredGrid(size=block_vol.size,
                                       spacing=block_vol.spacing,
                                       origin=block_vol.origin,
                                       device=device,
                                       channels=1)

    for ii, im in enumerate(image_nums):

        if ii == len(image_nums) - 1:
            continue

        next_slice = image_nums[ii + 1]

        for s, slice in enumerate(range(im, next_slice + 1)):
            step = 1.0 / (next_slice - im)
            cur_alpha = 1.0 - (s * step)
            next_alpa = 0.0 + (s * step)

            ablation_vol.data[:, slice] = (
                deformed_ablation_segs[ii].data *
                cur_alpha) + (deformed_ablation_segs[ii + 1].data * next_alpa)

    gauus_ablation = so.Gaussian.Create(1,
                                        10, [0.1, 2, 2],
                                        dim=3,
                                        device=device)(ablation_vol)

    io.SaveITKFile(gauus_ablation,
                   f'{out_dir}/{block}_ablation_segmentation.mhd')
    del gauus_ablation, deformed_ablation_segs
    torch.cuda.empty_cache()

    combined_vol = core.StructuredGrid(size=block_vol.size,
                                       spacing=block_vol.spacing,
                                       origin=block_vol.origin,
                                       device=block_vol.device,
                                       channels=1)

    for ii, im in enumerate(image_nums):

        if ii == len(image_nums) - 1:
            continue

        next_slice = image_nums[ii + 1]

        for s, slice in enumerate(range(im, next_slice + 1)):
            step = 1.0 / (next_slice - im)
            cur_alpha = 1.0 - (s * step)
            next_alpa = 0.0 + (s * step)

            combined_vol.data[:, slice] = (
                deformed_combined_segs[ii].data *
                cur_alpha) + (deformed_combined_segs[ii + 1].data * next_alpa)

    # gauus_ablation = so.Gaussian.Create(1, 10, [0.1, 2, 2], dim=3, device=device)(ablation_vol)

    io.SaveITKFile(
        combined_vol,
        f'{out_dir}/{block}_ablation_and_transition_segmentation.mhd')

    del block_vol
    del combined_vol
    torch.cuda.empty_cache()
Ejemplo n.º 19
0
def process_mic(micicroscopic, mic_seg_file, blockface, label, device='cpu'):
    meta_dict = {}

    try:
        with h5py.File(micicroscopic, 'r') as f:
            mic = f['ImageData'][1, ::10, ::10]
    except KeyError:
        with h5py.File(micicroscopic, 'r') as f:
            mic = f['RawImage/ImageData'][1, ::10, ::10]
            for key in f['RawImage'].attrs:
                meta_dict[key] = f['RawImage'].attrs[key]

    with h5py.File(mic_seg_file, 'r') as f:
        mic_seg = f['ImageData'][0, ::10, ::10]

    mic = core.StructuredGrid(
        mic.shape,
        tensor=torch.tensor(mic, dtype=torch.float32, device=device).unsqueeze(0),
        spacing=torch.tensor([10.0, 10.0], dtype=torch.float32, device=device),
        device=device,
        dtype=torch.float32,
        channels=1
    )

    mic_seg = core.StructuredGrid(
        mic_seg.shape,
        tensor=torch.tensor(mic_seg, dtype=torch.float32, device=device).unsqueeze(0),
        spacing=torch.tensor([10.0, 10.0], dtype=torch.float32, device=device),
        device=device,
        dtype=torch.float32,
        channels=1
    )
    # mic_seg.data = (mic_seg.data <= 0.5).float()

    if 'Affine' in meta_dict:
        opt_affine = torch.tensor(meta_dict['Affine'], dtype=torch.float32, device=device)
        optaff_filter = AffineTransform.Create(affine=opt_affine, device=device)
        aff_mic_image = optaff_filter(mic, blockface)
        aff_mic_label = optaff_filter(mic_seg, blockface)

        return aff_mic_image, aff_mic_label, opt_affine

    points = torch.tensor(
        LandmarkPicker([mic[0].cpu(), blockface[1].cpu()]),
        dtype=torch.float32,
        device=device
    ).permute(1, 0, 2)

    # Change to real coordinates
    points *= torch.cat([mic.spacing[None, None, :], blockface.spacing[None, None, :]], 0)
    points += torch.cat([mic.origin[None, None, :], blockface.origin[None, None, :]], 0)

    aff_filter = AffineTransform.Create(points[1], points[0], device=device)

    affine = torch.eye(3, device=device, dtype=torch.float32)
    affine[0:2, 0:2] = aff_filter.affine
    affine[0:2, 2] = aff_filter.translation

    # aff_mic_image = aff_filter(mic, blockface)
    aff_mic_seg = aff_filter(mic_seg, blockface)

    # Do some additional registration just to make sure it is in the right spot
    similarity = so.L2Similarity.Create(device=device)
    model = so.AffineIntensity.Create(similarity, device=device)

    # Create the optimizer
    optimizer = optim.SGD([
        {'params': model.affine, 'lr': 1.0e-11},
        {'params': model.translation, 'lr': 1.0e-12}], momentum=0.9, nesterov=True
    )

    energy = []
    for epoch in range(0, 1000):
        optimizer.zero_grad()
        loss = model(
            label.data, aff_mic_seg.data
        )
        energy.append(loss.item())

        print(f'===> Iteration {epoch:3} Energy: {loss.item():.3f}')

        loss.backward()  # Compute the gradients
        optimizer.step()  #

        # if epoch >= 2:
        if epoch > 10 and np.mean(energy[-10:]) - energy[-1] < 0.01:
            break

    itr_affine = torch.eye(3, device=device, dtype=torch.float32)
    itr_affine[0:2, 0:2] = model.affine
    itr_affine[0:2, 2] = model.translation

    opt_affine = torch.matmul(itr_affine.detach(), affine)

    # Create a new resample filter to make sure everything works
    optaff_filter = AffineTransform.Create(affine=opt_affine, device=device)

    aff_mic_image = optaff_filter(mic, blockface)
    aff_mic_label = optaff_filter(mic_seg, blockface)

    return aff_mic_image, aff_mic_label, opt_affine
Ejemplo n.º 20
0
def MultiscaleElast(regObj, opt):

    device = opt.device

    try:
        src_name = regObj.I0
        tar_name = regObj.I1
        regObj.I1 = io.LoadITKFile(regObj.I1, device)
        regObj.I0 = io.LoadITKFile(regObj.I0, device)
    except RuntimeError:
        src_name = _getFilePath('Source Image File (ElastReg)',
                                initialdir='/home/sci/blakez/ucair/')
        tar_name = _getFilePath('Target Image File (ElastReg)',
                                initialdir='/home/sci/blakez/ucair/')
        regObj.I1 = io.LoadITKFile(tar_name, device)
        regObj.I0 = io.LoadITKFile(src_name, device)

    # Check if the croppedImage exists in the object - temperature object wont have it
    if regObj.croppedImage != 'None':
        # Load the cropped image which contains the region of interest
        try:
            crp_im = io.LoadITKFile(regObj.croppedImage, device)
        except RuntimeError:
            regObj.croppedImage = _getFilePath(
                'Cropped Image File', initialdir='/home/sci/blakez/ucair/')
            crp_im = io.LoadITKFile(regObj.croppedImage, device)

        # Resample the images onto the ROI grid
        regObj.I1 = so.ResampleWorld.Create(crp_im, device=device)(regObj.I1)
        regObj.I0 = so.ResampleWorld.Create(crp_im, device=device)(regObj.I0)

        del crp_im

    if hasattr(regObj, 'unionSize'):
        # Make the grid for the union and resample the two images onto that grid
        # unionGrid = cc.MakeGrid(regObj.unionSize, regObj.unionSpacing, regObj.unionOrigin)
        unionIm = core.StructuredGrid(size=regObj.unionSize,
                                      origin=regObj.unionOrigin,
                                      spacing=regObj.unionSpacing,
                                      channels=1)

        regObj.I0 = so.ResampleWorld.Create(unionIm, device=device)(regObj.I0)
        regObj.I1 = so.ResampleWorld.Create(unionIm, device=device)(regObj.I1)

        # Make sure that the registration is only happening where both of them are not 0
        regObj.I0.data[regObj.I1.data == 0.0] = 0.0
        regObj.I1.data[regObj.I0.data == 0.0] = 0.0

    # Make sure that both images are from 0 to 1
    regObj.I0 = regObj.I0 / regObj.I0.max()
    regObj.I1 = regObj.I1 / regObj.I1.max()

    # Median filter if the regObj has a kernel size for it
    if regObj.medianFilterSize != 'None':
        regObj.I0 = rc.MedianFilter_I(regObj.I0, regObj.medianFilterSize)
        regObj.I1 = rc.MedianFilter_I(regObj.I1, regObj.medianFilterSize)

    if regObj.tvWeight != 'None':
        regObj.I0 = rc.TVFilter_I(regObj.I0, regObj.tvWeight)
        regObj.I1 = rc.TVFilter_I(regObj.I1, regObj.tvWeight)

    # Variance Equalize volumes
    if regObj.sourceVarESig != 'None':
        kernel_size = regObj.sourceVarESig * 3
        regObj.I0 = so.VarianceEqualize.Create(kernel_size,
                                               regObj.sourceVarESig,
                                               device=device)(regObj.I0)
    if regObj.targetVarESig != 'None':
        kernel_size = regObj.sourceVarESig * 3
        regObj.I1 = so.VarianceEqualize.Create(kernel_size,
                                               regObj.sourceVarESig,
                                               device=device)(regObj.I1)

    # Check for masks: assume they mask out the water or bladder
    if regObj.I1_mask != 'None':
        try:
            mask = io.LoadITKFile(regObj.I1_mask, device)
        except RuntimeError:
            regObj.I1_mask = _getFilePath('Mask Image File (Target)',
                                          initialdir='/')
            mask = io.LoadITKFile(regObj.I1_mask, device)
        mask = so.ResampleWorld.Create(regObj.I1, device=opt.device)(mask)
        regObj.I1 = regObj.I1 * ((1 - mask) * -1)
        del mask
        torch.cuda.empty_cache()

    if regObj.I0_mask != 'None':
        try:
            mask = io.LoadITKFile(regObj.I0_mask, device)
        except RuntimeError:
            regObj.I0_mask = _getFilePath('Mask Image File (Source)',
                                          initialdir='/')
            mask = io.LoadITKFile(regObj.I0_mask, device)
        mask = so.ResampleWorld.Create(regObj.I0, device=opt.device)(mask)
        regObj.I0 = regObj.I0 * ((1 - mask) * -1)
        del mask
        torch.cuda.empty_cache()

    # Gaussian blur the images - blue after masking so the edges are not as sharp
    if regObj.gaussSigma != 'None':
        blur = so.Gaussian.Create(1,
                                  regObj.gaussKernel * 3,
                                  regObj.gaussSigma * 3,
                                  dim=3,
                                  device=device,
                                  dtype=torch.float32)
        regObj.I0 = blur(regObj.I0)
        regObj.I1 = blur(regObj.I1)

    deformation = regObj.I1.clone()
    deformation.set_to_identity_lut_()
    deformation_list = []

    # Create a grid composer
    composer = so.ComposeGrids(device=device,
                               dtype=torch.float32,
                               padding_mode='border')
    #
    for i, s in enumerate(regObj.scales):

        scale_source = regObj.I0.set_size(regObj.I1.size // s, inplace=False)
        scale_target = regObj.I1.set_size(regObj.I1.size // s, inplace=False)
        deformation = deformation.set_size(regObj.I1.size // s, inplace=False)

        # Apply the deformation to the source image
        scale_source = so.ApplyGrid(deformation)(scale_source)

        # Create the matching term
        similarity = so.L2Similarity.Create(dim=3, device=device)

        # Create the smoothing operator
        operator = so.FluidKernel.Create(
            scale_target,
            device=device,
            alpha=1.0,
            beta=0.0,
            gamma=0.001,
        )

        # Create the regularizer
        regularizer = so.NormGradient.Create(weight=regObj.regWeight[i],
                                             device=device,
                                             dtype=regObj.I1.dtype,
                                             dim=3)

        # Now register the source and the gad volume
        interday = st.IterativeMatch.Create(
            source=scale_source,
            target=scale_target,
            similarity=similarity,
            operator=operator,
            device=device,
            step_size=regObj.stepSize[i],
            regularization=regularizer,
            incompressible=regObj.incompressible)

        energy = [interday.initial_energy]
        print(f'Iteration: 0   Energy: {interday.initial_energy}')
        for i in range(1, regObj.Niter[i]):
            energy.append(interday.step())
            print(f'Iteration: {i}   Energy: {energy[-1]}')

            # if energy[-1] > energy[-2] - (3e-4 * energy[-2]):
            #     break

        deformation = interday.get_field()
        deformation_list.append(deformation.clone().set_size(regObj.I1.size,
                                                             inplace=False))
        deformation = composer(deformation_list[::-1])

    regObj.I0 = src_name
    regObj.I1 = tar_name

    return deformation
Ejemplo n.º 21
0
def register_histopathology_to_blockface(rabbit, block, img_num, bf_slice):

    blockface_dir = f'/hdscratch/ucair/{rabbit}/blockface/{block}/'
    histology_dir = f'/hdscratch/ucair/{rabbit}/microscopic/{block}/'
    out_dir = f'{histology_dir}deformations/'

    if not os.path.exists(out_dir):
        os.makedirs(out_dir)

    # if os.path.exists(f'{out_dir}/img_{img_num}_deformation_to_blockface.mhd'):
    #     return

    # Load and make the histopathology segmentation
    segs = []
    segs += [
        io.LoadITKFile(
            f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_healthy_tissue.nrrd',
            device=device)
    ]
    if os.path.exists(
            f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_ablated_region.nrrd'
    ):
        segs += [
            io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_ablated_region.nrrd',
                device=device)
        ]
    if os.path.exists(
            f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_uncertain_region.nrrd'
    ):
        segs += [
            io.LoadITKFile(
                f'{histology_dir}segmentations/IMG_{img_num}/img_{img_num}_uncertain_region.nrrd',
                device=device)
        ]

    histology_seg = core.StructuredGrid.FromGrid(segs[0], channels=1)
    for seg in segs:
        histology_seg += seg

    try:
        blockface_seg = io.LoadITKFile(
            f'{blockface_dir}volumes/raw/hd_labels/{block}_hdlabel_volume.nrrd',
            device=device)
    except:
        blockface_seg = io.LoadITKFile(
            f'{blockface_dir}volumes/raw/segmentation_volume.nrrd',
            device=device)

    # # Load the surface slice and get the difference
    # blockface_surf = io.LoadITKFile(f'{blockface_dir}volumes/raw/surface/IMG_{bf_slice:03d}_surface.mhd',
    #                                device=device)
    #
    # blockface_surf_p1 = io.LoadITKFile(f'{blockface_dir}volumes/raw/surface/IMG_{bf_slice + 1:03d}_surface.mhd',
    #                                    device=device)
    #
    # diff = (blockface_surf - blockface_surf_p1).data[2]
    #
    # diff = (diff - diff.min()) / (diff.max() - diff.min())

    # Extract the slice
    blockface_seg = blockface_seg.extract_slice(bf_slice - 1, dim=0)

    aff_seg, affine = solve_affine(histology_seg,
                                   blockface_seg,
                                   img_num,
                                   out_dir=out_dir,
                                   device=device)
    np.savetxt(f'{out_dir}/img_{img_num}_affine_to_blockface.txt',
               affine.cpu().numpy())

    #### Apply the affine to the image
    mic_file = f'{histology_dir}hdf5/{block}_img{img_num}_image.hdf5'

    meta_dict = {}
    with h5py.File(mic_file, 'r') as f:
        mic = f['RawImage/ImageData'][:, ::10, ::10]
        for key in f['RawImage'].attrs:
            meta_dict[key] = f['RawImage'].attrs[key]

    mic = core.StructuredGrid(mic.shape[1:],
                              tensor=torch.tensor(mic,
                                                  dtype=torch.float32,
                                                  device=device),
                              spacing=torch.tensor([10.0, 10.0],
                                                   dtype=torch.float32,
                                                   device=device),
                              origin=histology_seg.origin,
                              device=device,
                              dtype=torch.float32,
                              channels=3)

    mic = (mic - mic.min()) / (mic.max() - mic.min())
    aff_mic = so.AffineTransform.Create(affine=affine)(mic, blockface_seg)
    # plt.figure()
    # plt.imshow(aff_mic.data.permute(1,2,0).cpu())
    # plt.axis('off')
    # plt.gca().invert_yaxis()
    # plt.savefig(f'/home/sci/blakez/ucair/Animations/Scrolls/Mic/Images/{blockface_slice}_image.png', dpi=500, bbox_inches='tight', pad_inches=0)

    def_histology, deformation = deformable_histology_to_blockface(
        aff_seg,
        blockface_seg,
        steps=[0.01, 0.005],
        scales=[4, 1],
        gauss=True,
        mic=aff_mic)

    # Save out the deformation
    io.SaveITKFile(deformation,
                   f'{out_dir}/img_{img_num}_deformation_to_blockface.mhd')
Ejemplo n.º 22
0
def solve_affines(block_list):

    for block_path in block_list:
        block = block_path.split('/')[-1]

        if not os.path.exists(f'{block_path}/volumes/raw/'):
            os.makedirs(f'{block_path}/volumes/raw/difference/')
            os.makedirs(f'{block_path}/volumes/raw/surface/')
            os.makedirs(f'{block_path}/volumes/raw/scatter/')

        # elif sorted(glob.glob(f'{block_path}/volumes/raw/difference/*')):
        #     print('alread filtered')
        #     continue

        image_list = sorted(glob.glob(f'{block_path}/images/filtered/*'))

        if not image_list:
            print(f'No filtered image files found for {block} ... skipping')
            continue

        print(f'Solving Affines for {block} ... ')
        spacing = list(
            map(float,
                input(f'X,Y Spacing for {block}: ').strip().split(' ')))
        # spacing = [0.0163, 0.0163]

        surface_list = [x for x in image_list if 'surface' in x]
        scatter_list = [x for x in image_list if 'scatter' in x]

        ImScatter = io.LoadITKFile(scatter_list[0], device=device)
        ImScatter.set_spacing_(spacing)
        ImScatter.set_origin_(-1 * (ImScatter.size * ImScatter.spacing) / 2)
        ImScatter /= ImScatter.max()

        # Load the surface image
        ImSurface = io.LoadITKFile(surface_list[0], device=device)
        ImSurface.set_spacing_(spacing)
        ImSurface.set_origin_(-1 * (ImSurface.size * ImSurface.spacing) / 2)
        ImSurface /= ImSurface.max()

        # Save out the first image
        difference = ImScatter - ImSurface

        ImDifference = core.StructuredGrid(
            ImSurface.shape()[1:],
            tensor=difference.data[2].unsqueeze(0),
            spacing=ImSurface.spacing,
            origin=ImSurface.origin,
            device=device,
            dtype=torch.float32,
            channels=1)

        io.SaveITKFile(
            ImScatter, f'{block_path}/volumes/raw/scatter/IMG_001_scatter.mhd')
        io.SaveITKFile(
            ImSurface, f'{block_path}/volumes/raw/surface/IMG_001_surface.mhd')
        io.SaveITKFile(
            ImDifference,
            f'{block_path}/volumes/raw/difference/IMG_001_difference.mhd')

        ImPrev = ImScatter.copy()

        Adict = {
            'origin': ImPrev.origin.tolist(),
            'spacing': ImPrev.spacing.tolist(),
            scatter_list.index(scatter_list[0]): np.eye(3).tolist()
        }

        maxIter = 1000

        for scat, surf in zip(scatter_list[1:], surface_list[1:]):
            print(f'Registering {scat.split("/")[-1]} .... ')
            sys.stdout.flush()
            image_num = scat.split('/')[-1].split('_')[1]

            # Get the number the file is from the start
            dist = scatter_list.index(scat)

            # Load the next image
            ImScatter = io.LoadITKFile(scat, device=device)
            ImScatter.set_spacing_(ImPrev.spacing)
            ImScatter.set_origin_(ImPrev.origin)
            ImScatter /= ImScatter.max()

            ImSurface = io.LoadITKFile(surf, device=device)
            ImSurface.set_spacing_(ImPrev.spacing)
            ImSurface.set_origin_(ImPrev.origin)
            ImSurface /= ImSurface.max()

            difference = ImScatter - ImSurface

            ImDifference = core.StructuredGrid(
                ImSurface.shape()[1:],
                tensor=difference.data[2].unsqueeze(0),
                spacing=ImSurface.spacing,
                origin=ImSurface.origin,
                device=device,
                dtype=torch.float32,
                channels=1)

            affine = affine_register(ImPrev.copy(),
                                     ImSurface.copy(),
                                     niter=maxIter,
                                     device=device)

            # Save out the images
            aff_filter = so.AffineTransform.Create(affine=affine,
                                                   device=device)
            aff_scatter = aff_filter(ImScatter)
            aff_surface = aff_filter(ImSurface)
            aff_difference = aff_filter(ImDifference)
            # difference = (difference - difference.min()) / (difference.max() - difference.min())

            io.SaveITKFile(
                aff_scatter,
                f'{block_path}/volumes/raw/scatter/IMG_{image_num}_scatter.mhd'
            )
            io.SaveITKFile(
                aff_surface,
                f'{block_path}/volumes/raw/surface/IMG_{image_num}_surface.mhd'
            )
            io.SaveITKFile(
                aff_difference,
                f'{block_path}/volumes/raw/difference/IMG_{image_num}_difference.mhd'
            )

            Adict[dist] = affine.detach().cpu().clone().tolist()
            ImPrev = aff_scatter.copy()

        with open(f'{block_path}/volumes/raw/{block}_affine_dictionary.yaml',
                  'w') as f:
            yaml.dump(Adict, f)

        _make_volumes(block_path)
Ejemplo n.º 23
0
def stitch_surfaces(rabbit):

    rabbit_dir = f'/hdscratch/ucair/{rabbit}/blockface/'
    raw_ext = '/surfaces/raw/'
    vol_ext = '/volumes/raw/'

    # Get a list of the blocks
    block_list = sorted(glob.glob(f'{rabbit_dir}block*'))

    # complete = ['block08']
    complete = ['block06', 'block09']

    for i, block_path in enumerate(block_list):

        block = block_path.split('/')[-1]
        stitching_dir = f'{rabbit_dir}{block}{raw_ext}/stitching/'

        if block in complete:
            continue

        if not os.path.exists(stitching_dir):
            print(f'No stitching surfaces found for {block}.')
            continue

        target_surface_path = f'{stitching_dir}/raw/{block}_target_faces.obj'
        source_surface_path = f'{stitching_dir}/raw/{block}_source_faces.obj'

        # Load the target surface
        try:
            verts, faces = io.ReadOBJ(target_surface_path)
            tar_surface = core.TriangleMesh(verts, faces)
            tar_surface.to_(device)
        except IOError:
            print(
                f'The target stitching surface for {block} was not found ... skipping'
            )
            continue

        try:
            verts, faces = io.ReadOBJ(source_surface_path)
            src_surface = core.TriangleMesh(verts, faces)
            src_surface.to_(device)
            src_surface.flip_normals_()
        except IOError:
            print(
                f'The source stitching surface for {block} was not found ... skipping'
            )
            continue

        # Need to load the exterior to drag along
        try:
            verts, faces = io.ReadOBJ(
                f'{rabbit_dir}/{block}/{raw_ext}/{block}_decimate.obj')
            surface_ext = core.TriangleMesh(verts, faces)
            surface_ext.to_(device)
        except IOError:
            print(
                f'The source stitching surface for {block} was not found ... skipping'
            )
            continue

        # Determine the surface half way between the source and the target
        try:
            with open(
                    f'{stitching_dir}/raw/{block}_middle_surface_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'currents_sigma': [5.0, 0.25, 0.05],
                'propagation_sigma': [1.0, 1.0, 1.0],
                'deformable_lr': [0.0008, 0.01, 0.01],
                'converge': 0.05,
                'mid_offset': 0.5
            }

        # Do the deformable registration
        def_src_surface, def_ext = tools.deformable_register(
            tar_surface.copy(),
            src_surface.copy(),
            src_excess=None,
            deformable_lr=params['deformable_lr'],
            currents_sigma=params['currents_sigma'],
            prop_sigma=params['propagation_sigma'],
            grid_size=None,
            converge=params['converge'],
            accu_forward=False,
            accu_inverse=False,
            device=device,
        )

        new_verts = src_surface.vertices.clone() + (
            (def_src_surface.vertices - src_surface.vertices) *
            params['mid_offset'])
        mid_surface = src_surface.copy()
        mid_surface.vertices = new_verts.clone()
        mid_surface.calc_normals()
        mid_surface.calc_centers()

        io.WriteOBJ(
            def_src_surface.vertices, def_src_surface.indices,
            f'{stitching_dir}/deformable_pieces/{block}_source_faces.obj')
        io.WriteOBJ(
            mid_surface.vertices, mid_surface.indices,
            f'{stitching_dir}/deformable_pieces/{block}_source_middle.obj')

        with open(f'{stitching_dir}/raw/{block}_middle_surface_config.yaml',
                  'w') as f:
            yaml.dump(params, f)

        # Load the binary volume for the block
        mask = io.LoadITKFile(
            f'{rabbit_dir}/{block}/{vol_ext}/segmentation_volume.mhd',
            device='cuda:0')

        # Load the other surfaces to drag along
        extras_paths = [
            f'{rabbit_dir}{block}{raw_ext}{block}_decimate.obj',
            f'{rabbit_dir}{block}{raw_ext}{block}_ext.obj'
        ]

        if os.path.exists(f'{rabbit_dir}{block}{raw_ext}{block}_head.obj'):
            extras_paths += [f'{rabbit_dir}{block}{raw_ext}{block}_head.obj']

        if os.path.exists(f'{rabbit_dir}{block}{raw_ext}{block}_foot.obj'):
            extras_paths += [f'{rabbit_dir}{block}{raw_ext}{block}_foot.obj']

        if os.path.exists(
                f'{rabbit_dir}{block}{raw_ext}{block}_head_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{block}{raw_ext}{block}_head_support.obj'
            ]

        if os.path.exists(
                f'{rabbit_dir}{block}{raw_ext}{block}_foot_support.obj'):
            extras_paths += [
                f'{rabbit_dir}{block}{raw_ext}{block}_foot_support.obj'
            ]

        extra_surfaces = []
        for path in extras_paths:
            try:
                verts, faces = io.ReadOBJ(path)
            except IOError:
                extra_name = path.split('/')[-1]
                print(
                    f'{extra_name} not found as an extra ... removing from list'
                )
                _ = extras_paths.pop(extras_paths.index(path))
                continue

            extra_surfaces += [core.TriangleMesh(verts, faces)]
            extra_surfaces[-1].to_(device)

        # Define the diffusion parameters for the registration
        try:
            with open(f'{stitching_dir}/raw/{block}_diffusion_config.yaml',
                      'r') as f:
                diff_params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            diff_params = {
                'z_diff_c': 5.0,
                'y_diff_c': 200.0,
                'x_diff_c': 30.0,
                'background_c': 0.5,
                'niter': 10000,
                'gamma': 0.0005,
                'propegation_sigma': [0.2, 0.2, 0.2],
                'grad_amp': 300.0
            }

        try:
            with open(
                    f'{stitching_dir}/raw/{block}_stitch_surface_config.yaml',
                    'r') as f:
                params = yaml.load(f, Loader=yaml.FullLoader)
        except IOError:
            params = {
                'currents_sigma': [2.0, 1.0],
                'smoothing_sigma': [2.0, 2.0, 2.0],
                'deformable_lr': [0.0001, 0.001],
                'grid_size': [40, 256, 256],
                'converge': 0.05,
                'grid_device': 'cpu',
                'niters': 25
            }

        # Do the deformable registration with the source to the mid
        def_src_surface, def_tar_surface, def_extra_surfaces, phi, phi_inv = deformable_register(
            tar_surface.copy(),
            src_surface.copy(),
            mid_surface.copy(),
            src_excess=extra_surfaces,
            deformable_lr=params['deformable_lr'],
            currents_sigma=params['currents_sigma'],
            prop_sigma=params['smoothing_sigma'],
            grid_size=params['grid_size'],
            converge=params['converge'],
            accu_forward=True,
            accu_inverse=True,
            grid_device=params['grid_device'],
            device=device,
            mask=mask,
            diff_params=diff_params,
            iters=params['niters'])

        with open(f'{stitching_dir}/raw/{block}_stitch_surface_config.yaml',
                  'w') as f:
            yaml.dump(params, f)

        with open(f'{stitching_dir}/raw/{block}_diffusion_config.yaml',
                  'w') as f:
            yaml.dump(diff_params, f)

        io.WriteOBJ(
            def_src_surface.vertices, def_src_surface.indices,
            f'{stitching_dir}/deformable/{block}_whole_stitched_decimate.obj')

        io.SaveITKFile(phi,
                       f'{stitching_dir}/deformable/{block}_stitch_phi.mhd')
        io.SaveITKFile(
            phi_inv, f'{stitching_dir}/deformable/{block}_stitch_phi_inv.mhd')

        out_path = f'{stitching_dir}/deformable/'
        for extra_path, extra_surface in zip(extras_paths, def_extra_surfaces):
            name = extra_path.split('/')[-1]
            io.WriteOBJ(extra_surface.vertices, extra_surface.indices,
                        f'{out_path}{name}')

        vol = io.LoadITKFile(
            '/hdscratch/ucair/18_047/blockface/block08/volumes/raw/difference_volume.mhd',
            device='cuda:0')

        # phi_inv.set_size((60, 1024, 1024))
        # phi.set_size((60, 1024, 1024))
        # resampled_stitched = so.ApplyGrid.Create(phi_inv, device='cuda:0')(vol, phi_inv)
        # resampled_unstitched = so.ApplyGrid.Create(phi, device='cuda:0')(resampled_stitched, phi)
        # io.SaveITKFile(resampled_stitched, '/home/sci/blakez/stitched_block08.mhd')
        # io.SaveITKFile(resampled_unstitched, '/home/sci/blakez/unstitched_block08.mhd')

        print(f'Done stitching {block} ... ')
Ejemplo n.º 24
0
def LoadDICOM(dicomDirectory, device):
    '''Takes a directory that contains DICOM files and returns a PyCA Image3D

    dicomDirectory = Full path to the folder with the dicoms

    Returns an Image3D in the Reference Coordiante System (RCS)
    '''

    # Read the DICOM files in the directory

    if type(dicomDirectory) == list:
        dicoms = dicomDirectory
    else:
        dicoms = dc.read_dicom_directory(dicomDirectory)

    # Sort the loaded dicoms
    sort_dcms = dc.sort_dicoms(dicoms)

    acqList = [sort_dcms[x].AcquisitionNumber for x in range(len(sort_dcms))]

    # Need to account for if there are multiple acquisitions in a single folder
    if np.min(acqList) != np.max(acqList):
        volList = []
        for acq in range(np.max(acqList)):
            dcm_list = [x for x in sort_dcms if x.AcquisitionNumber == (acq + 1)]
            volList += [LoadDICOM(dcm_list, device)]
        return volList

    # Extract the actual volume of pixels
    pixel_vol = dc.get_volume_pixeldata(sort_dcms)

    # Generate the affine from the dicom headers (THIS CODE WAS MODIFIED FROM dicom2nifti)
    affine, spacing, pp = dc.create_affine(sort_dcms)

    if type(affine) == str:
        return 'Not A Volume'

    # Convert the dicom volume to an Image3D - numpy is X, Y, Z and CAMP is Z, Y, X
    rawDicom = core.StructuredGrid(
        size=pixel_vol.shape,
        origin=[0.0, 0.0, 0.0],
        tensor=torch.tensor(pixel_vol.astype(np.float)).unsqueeze(0),
        device=device,
        channels=1
    )

    rcs_grid = SolveAffineGrid(rawDicom, affine)

    wcsTrans = np.eye(4)
    if pp == 'HFS':
        wcsTrans[0, 0] *= -1
        wcsTrans[1, 1] *= -1
    if pp == 'FFS':
        wcsTrans[1, 1] *= -1
        wcsTrans[2, 2] *= -1
    if pp == 'FFP':
        wcsTrans[0, 0] *= -1
        wcsTrans[2, 2] *= -1

    world_grid = SolveAffineGrid(rcs_grid, wcsTrans)

    rcs_grid = so.AffineTransform.Create(affine=torch.tensor(affine, dtype=torch.float, device=device))(
        rawDicom, rcs_grid, xyz_affine=False)
    world_grid = so.AffineTransform.Create(affine=torch.tensor(wcsTrans, dtype=torch.float, device=device))(
        rcs_grid, world_grid, xyz_affine=False)

    return world_grid
Ejemplo n.º 25
0
def process_mic(rabbit):

    raw_mic_dir = f'/hdscratch/ucair/{rabbit}/microscopic/'
    bf_dir = f'/hdscratch/ucair/{rabbit}/blockface/'
    raw_bf_dir = f'/hdscratch/ucair/blockface/{rabbit}/'

    from Histology.NNSeg.models import UNet
    # from types import SimpleNamespace
    import torch.nn as nn
    from skimage import color
    model = UNet.UNet(6, 3)
    # saved_dict = SimpleNamespace(**torch.load(f'./Histology/NNSeg/model_weights/epoch_00230_model.pth'))

    # if opt.cuda:
    device = torch.device('cuda')
    model = model.to(device=device)
    model = nn.DataParallel(model)
    params = torch.load('./NNSeg/model_weights/epoch_00230_model.pth')
    model.load_state_dict(params['state_dict'])
    # else:
    #     device = torch.device('cpu')
    #     params = torch.load(f'./Histology/NNSeg/model_weights/epoch_00230_model.pth', map_location='cpu')
    #     model.load_state_dict(params['state_dict'])

    block_list = sorted(glob.glob(f'{raw_mic_dir}/block*'))

    for block_path in block_list:
        block = block_path.split('/')[-1]

        # Make sure that the hdf5 files have been written
        if not os.path.exists(f'{raw_mic_dir}{block}/hdf5/'):
            os.makedirs(f'{raw_mic_dir}{block}/hdf5/')
            convert_hdf5(block_path, raw_mic_dir)

        mic_list = sorted(glob.glob(f'{block_path}/raw/*_image.tif'))
        # if mic_list == []:
        mic_list += sorted(glob.glob(f'{block_path}/raw/*_image.jpg'))

        img_nums = [x.split('/')[-1].split('_')[1] for x in mic_list]

        for img in img_nums:

            if os.path.exists(
                    f'{raw_mic_dir}{block}/segmentations/IMG_{img}/img_{img}_gmm_segmentation.nii.gz'
            ):
                continue

            mic_file = f'{raw_mic_dir}{block}/hdf5/{block}_img{img}_image.hdf5'

            meta_dict = {}
            with h5py.File(mic_file, 'r') as f:
                mic = f['RawImage/ImageData'][:, ::10, ::10]
                for key in f['RawImage'].attrs:
                    meta_dict[key] = f['RawImage'].attrs[key]

            mic = core.StructuredGrid(mic.shape[1:],
                                      tensor=torch.tensor(mic,
                                                          dtype=torch.float32,
                                                          device=device),
                                      spacing=torch.tensor([10.0, 10.0],
                                                           dtype=torch.float32,
                                                           device=device),
                                      device='cpu',
                                      dtype=torch.float32,
                                      channels=3)

            mic = (mic - mic.min()) / (mic.max() - mic.min())

            plt.figure()
            plt.imshow(mic.data.permute(1, 2, 0).cpu())
            plt.title('Microscopic Image')
            plt.show()
            plt.pause(1.0)

            satisfied = False

            while not satisfied:
                n_comps = int(
                    input("Enter the number of components for segmentation: "))
                print('Clustering ... ', end='')
                cluster = cluster_image(mic, n_comps)
                print('done')

                plt.figure()
                plt.imshow(cluster)
                plt.title('GMM Cluster')
                plt.colorbar()
                plt.show()
                plt.pause(1.0)

                redo_cluster = input(
                    "Are you satisfied with the clustering? [y/n]: ")
                if redo_cluster == 'y':
                    satisfied = True

            input_hsv = torch.from_numpy(
                color.rgb2hsv(mic.data.squeeze().permute(1, 2,
                                                         0))).permute(2, 0, 1)
            inputs = torch.cat([mic.data.squeeze(), input_hsv], dim=0)
            pred = model(inputs.unsqueeze(0)).cpu().detach().squeeze()

            seg = torch.zeros((pred.shape[1], pred.shape[2]))
            for i in range(0, pred.shape[0]):
                label = pred[i]
                seg[label > 0] = i

            # Save out the original image and the segmentation
            out_path = f'{raw_mic_dir}{block}/segmentations/IMG_{img}/'
            if not os.path.exists(out_path):
                os.makedirs(out_path)

            io.SaveITKFile(mic, f'{out_path}/img_{img}_color.nii.gz')
            io.SaveITKFile(
                core.StructuredGrid.FromGrid(mic, mic.data[0].unsqueeze(0)),
                f'{out_path}/img_{img}_red.nii.gz')
            io.SaveITKFile(
                core.StructuredGrid.FromGrid(mic, mic.data[1].unsqueeze(0)),
                f'{out_path}/img_{img}_green.nii.gz')
            io.SaveITKFile(
                core.StructuredGrid.FromGrid(mic, mic.data[2].unsqueeze(0)),
                f'{out_path}/img_{img}_blue.nii.gz')
            io.SaveITKFile(
                core.StructuredGrid.FromGrid(
                    mic,
                    torch.tensor(cluster).unsqueeze(0)),
                f'{out_path}/img_{img}_gmm_segmentation.nii.gz')
            io.SaveITKFile(core.StructuredGrid.FromGrid(mic, seg.unsqueeze(0)),
                           f'{out_path}/img_nn_seg.nii.gz')

            plt.close('all')

            print(f'Done with {img}')
Ejemplo n.º 26
0
def register(rabbit, base_dir='/hdscratch/ucair/'):
    source_path = f'{base_dir}{rabbit}/mri/exvivo/surfaces/raw/'
    target_path = f'{base_dir}{rabbit}/mri/invivo/surfaces/raw/'

    source_file = f'{source_path}exvivo_ablation_region_decimate.obj'
    target_file = f'{target_path}invivo_ablation_region_decimate.obj'

    verts, faces = io.ReadOBJ(target_file)
    invivo_surface = core.TriangleMesh(verts, faces)
    invivo_surface.to_(device=device)

    verts, faces = io.ReadOBJ(source_file)
    exvivo_surface = core.TriangleMesh(verts, faces)
    exvivo_surface.to_(device=device)

    print('Starting Affine ... ')
    # Load or create the dictionary for registration
    try:
        with open(f'{source_path}affine_config.yaml', 'r') as f:
            params = yaml.load(f, Loader=yaml.FullLoader)
    except IOError:
        params = {
            'spatial_sigma': [15.0],
            'affine_lr': 1.0e-07,
            'translation_lr': 1.0e-06,
            'converge': 4.0
        }

    try:
        aff = np.loadtxt(f'{source_path}exvivo_to_invivo_affine.txt')
        aff = torch.tensor(aff, device=device)
    except IOError:
        aff = affine(invivo_surface.copy(),
                     exvivo_surface.copy(),
                     affine_lr=params['affine_lr'],
                     translation_lr=params['translation_lr'],
                     converge=params['converge'],
                     spatial_sigma=params['spatial_sigma'],
                     device=device)
        # Save out the parameters:
        with open(f'{source_path}affine_config.yaml', 'w') as f:
            yaml.dump(params, f)
        np.savetxt(f'{source_path}exvivo_to_invivo_affine.txt',
                   aff.cpu().numpy())

    aff_tfrom = uo.AffineTransformSurface.Create(aff, device=device)
    aff_exvivo = aff_tfrom(exvivo_surface)

    if not os.path.exists(f'{source_path}../affine/'):
        os.makedirs(f'{source_path}../affine/')

    io.WriteOBJ(
        aff_exvivo.vertices, aff_exvivo.indices,
        f'{source_path}../affine/exvivo_to_invivo_{rabbit}_affine.obj')

    print('Starting Deformable ... ')
    try:
        with open(f'{source_path}/deformable_config.yaml', 'r') as f:
            params = yaml.load(f, Loader=yaml.FullLoader)
    except IOError:
        params = {
            'currents_sigma': [5.0, 1.0],
            'propagation_sigma': [8.0, 8.0, 8.0],
            'deformable_lr': [2.0e-04, 1.0e-04],
            'converge': 4.0,
            'phi_inv_size': [32, 32, 32],
            'n_iters': 500,
        }

    def_surface, _, phi, phi_inv = tools.deformable_register(
        invivo_surface.copy(),
        aff_exvivo.copy(),
        src_excess=None,
        deformable_lr=params['deformable_lr'],
        currents_sigma=params['currents_sigma'],
        prop_sigma=params['propagation_sigma'],
        converge=params['converge'],
        grid_size=params['phi_inv_size'],
        accu_forward=True,
        accu_inverse=True,
        device=device,
        grid_device='cuda:0',
        expansion_factor=1.5,
        iters=params['n_iters'])

    # Save out the parameters:
    with open(f'{source_path}deformable_config.yaml', 'w') as f:
        yaml.dump(params, f)

    if not os.path.exists(f'{source_path}../../volumes/raw//'):
        os.makedirs(f'{source_path}../../volumes/raw//')
    if not os.path.exists(f'{source_path}../deformable/'):
        os.makedirs(f'{source_path}../deformable/')

    io.SaveITKFile(
        phi_inv,
        f'{source_path}../../volumes/raw/exvivo_to_invivo_phi_inv.mhd')
    io.SaveITKFile(phi,
                   f'{source_path}../../volumes/raw/exvivo_to_invivo_phi.mhd')
    io.WriteOBJ(def_surface.vertices, def_surface.indices,
                f'{source_path}../deformable/exvivo_to_invivo_deformable.obj')