Ejemplo n.º 1
0
def process(input_path, output_path, hv_path, event_slice):
    reader = TIOReader(input_path)
    n_events = reader.n_events
    n_pixels = reader.n_pixels
    n_samples = reader.n_samples
    mapping = reader.mapping
    mappingtc = reader.tc_mapping
    mappingsp = MappingSP(mappingtc)

    waveforms = reader[event_slice]

    sp_arr = np.vstack(mapping.groupby("superpixel").pixel.apply(np.array))
    avg_wfs = waveforms[:, sp_arr].mean((0, 2))
    amplitudes = avg_wfs.max(1)

    hvs = hv_file_reader(hv_path)
    hv255 = np.where(hvs == 255)

    df = get_superpixel_mapping(mapping)
    camera = CameraImage.from_mapping(df)
    image = amplitudes
    camera.image = image
    camera.add_colorbar("Superpixel-Waveform Max (mV)")
    camera.highlight_pixels(hv255, 'red')
    camera.save(output_path)

    lt75 = np.where(amplitudes < 75)
    print(lt75)
Ejemplo n.º 2
0
    def __init__(self, mapping):

        sp_mapping = get_superpixel_mapping(mapping)
        self.fig = plt.figure(figsize=(10, 5))
        self.ax_trigger = self.fig.add_subplot(1, 1, 1)

        self.ci_trigger = self.create_image(sp_mapping,
                                            ax=self.ax_trigger,
                                            clabel="Trigger")

        self.n_superpixels = sp_mapping.index.size
        sp_zero = np.zeros(self.n_superpixels, dtype=bool)
        self.ci_trigger.image = sp_zero
Ejemplo n.º 3
0
def plot_superpixel():
    """
    Make a camera image plot for values that are per superpixel
    """
    from target_calib import CameraConfiguration
    c = CameraConfiguration("1.1.0")
    m = c.GetMapping()
    df = get_superpixel_mapping(get_clp_mapping_from_tc_mapping(m))
    camera = CameraImage.from_mapping(df)
    image = np.zeros(m.GetNSuperPixels())
    image[::2] = 1
    camera.image = image
    plt.show()
Ejemplo n.º 4
0
def main():
    # path = get_astri_2019("d2019-06-10_ledflashers/flasher_comparison_May-June/unit0pattern-low_r1.tio")
    # path = get_astri_2019("d2019-06-10_ledflashers/flasher_comparison_May-June/Run13270_r1.tio")
    path = get_astri_2019(
        "d2019-06-10_ledflashers/flasher_comparison_May-June/Run13401_r1.tio")

    output_dir = path.replace("_r1.tio", "")
    reader = TIOReader(path, max_events=100)
    waveforms = reader[:].mean(0)
    mapping = get_superpixel_mapping(reader.mapping)
    n_pixels, n_samples = waveforms.shape
    n_sp = n_pixels // 4

    correction = pd.read_csv(join(DIR, "sp_illumination_profile.dat"),
                             sep='\t')['correction'].values

    sp_waveforms = waveforms.reshape((n_sp, 4, n_samples)).sum(1)
    sp_waveforms_corrected = sp_waveforms * correction[:, None]

    amplitude = sp_waveforms_corrected.max(1)
    median = np.median(amplitude)
    threshold = median * 1.10
    trigger_off = amplitude > threshold
    # trigger_off[[  # TODO: Remove?
    #     355, 356, 357, 358, 359, 382, 375, 460, 459, 457, 458, 465, 289, 489,
    #     502, 254, 247, 154, 144, 56, 46, 39, 24, 25, 76
    # ]] = True
    hv_off = np.zeros(n_sp, dtype=bool)
    hv_off[[24, 453]] = True
    print(f"SP Trigger OFF: {np.where(trigger_off)[0].tolist()}")
    print(f"SP HV OFF: {np.where(hv_off)[0].tolist()}")

    plot = CameraPlotter(mapping)
    plot.highlight_pixels(trigger_off, 'yellow')
    plot.highlight_pixels(hv_off, 'red')
    plot.plot_waveforms(sp_waveforms)
    plot.save(join(output_dir, "led.pdf"))
    plot.plot_waveforms(sp_waveforms_corrected)
    plot.save(join(output_dir, "uniform.pdf"))

    df = pd.DataFrame(
        dict(
            superpixel=np.arange(n_sp),
            hv_on=(~hv_off).astype(int),
            trigger_off=trigger_off.astype(int),
        ))
    df.to_csv(join(output_dir, "sp_settings.txt"), sep='\t', index=False)
Ejemplo n.º 5
0
    def __init__(self, mapping):
        super().__init__()

        sp_mapping = get_superpixel_mapping(mapping)

        self.fig = plt.figure(figsize=(10, 5))
        self.ax_spmax = self.fig.add_subplot(1, 2, 1)
        self.ax_trigger = self.fig.add_subplot(1, 2, 2)

        self.ci_spmax = self.create_image(
            sp_mapping, ax=self.ax_spmax, clabel="Superpixel-WF Max"
        )
        self.ci_trigger = self.create_image(
            sp_mapping, ax=self.ax_trigger, clabel="Trigger"
        )

        self.n_superpixels = sp_mapping.index.size
        sp_zero = np.zeros(self.n_superpixels, dtype=bool)
        self.ci_spmax.image = sp_zero
        self.ci_trigger.image = sp_zero
        self.highlight = self.ci_spmax.highlight_pixels(sp_zero, color='red')
Ejemplo n.º 6
0
    def __init__(self, mapping):
        super().__init__()

        sp_mapping = get_superpixel_mapping(mapping)

        self.fig = plt.figure(figsize=(10, 10))
        self.ax_spmax = self.fig.add_subplot(2, 2, 1)
        self.ax_spargmax = self.fig.add_subplot(2, 2, 2)
        self.ax_c = self.fig.add_subplot(2, 2, 3)
        self.ax_t = self.fig.add_subplot(2, 2, 4)

        self.ci_spmax = self.create_image(
            sp_mapping, ax=self.ax_spmax, clabel="Above Threshold"
        )
        self.ci_spargmax = self.create_image(
            sp_mapping, ax=self.ax_spargmax, clabel="SP Argmax"
        )
        self.ci_c = self.create_image(
            mapping, ax=self.ax_c, clabel="Extracted Charge (Photons)"
        )
        self.ci_t = self.create_image(
            mapping, ax=self.ax_t, clabel="Pulse Time (ns)"
        )

        self.n_pixels = mapping.index.size
        self.n_superpixels = sp_mapping.index.size
        pix_zero = np.zeros(self.n_pixels, dtype=bool)
        sp_zero = np.zeros(self.n_superpixels, dtype=bool)
        self.ci_spmax.image = sp_zero
        self.ci_spargmax.image = sp_zero
        self.ci_c.image = pix_zero
        self.ci_t.image = pix_zero
        self.highlights = dict(
            sp_max=self.ci_spmax.highlight_pixels(sp_zero, color='red'),
            sp_argmax=self.ci_spargmax.highlight_pixels(sp_zero, color='red'),
            c=self.ci_c.highlight_pixels(pix_zero, color='black', linewidth=0.05),
            t=self.ci_t.highlight_pixels(pix_zero, color='black', linewidth=0.05),
        )
Ejemplo n.º 7
0
    def __init__(self,
                 ip,
                 port,
                 sampleinterval=0.1,
                 timewindow=10.0,
                 size=(600, 350)):
        # PyQtGraph stuff
        self._interval = int(sampleinterval * 1000)
        self.app = QtGui.QApplication([])
        self.win = pg.GraphicsWindow()
        self.win.setWindowTitle("Triggerpattern viewer")
        # data
        self.data = defaultdict(
            list)  # {'hv_current':list(),'hv_voltage':list()}
        self.time = list()
        self.plts = {}
        self.curve_names = list()
        self.plot_time_window = 10
        # self.win.addItem(pg.TextItem(text='HEJHEJHEJ', color=(200, 200, 200), html=None, anchor=(0, 0), border=None, fill=None, angle=0, rotateAxis=None),row=1 )
        self.lastframeindicator = pg.LabelItem(text="")
        self.lastframe = datetime.now()
        self.win.addItem(self.lastframeindicator)
        self.gotdataindicator = pg.LabelItem(
            text='<font color="{}">{}</font>'.format("green", "connected"))
        self.win.addItem(self.gotdataindicator)
        self.win.nextRow()
        self.countersindicator = pg.LabelItem(text="")
        self.win.addItem(self.countersindicator)
        self.win.nextRow()
        self.last_uc_ev = 0
        self.missed_counter = 0
        self.readout_counter = 0

        self._add_plot(
            "Trigger rate",
            ("Rate Hz", ""),
            ("Time", "min"),
            ["Nominal triggers"],  # , "Busy triggers"],
        )
        # self._add_plot(
        #     "Slow signal amplitude",
        #     ("Amplitude", "mV"),
        #     ("Time", "min"),
        #     ["total amplitude", "max amplitude X 10"],
        # )
        self.win.nextRow()
        self.img = pg.ImageItem(levels=(0, 400))
        self.p = self.win.addPlot()
        self.p.addItem(self.img)
        self.c = CameraConfiguration("1.1.0")
        self.m = self.c.GetMapping()
        from CHECLabPy.plotting.camera import CameraImage, CameraImageImshow
        from CHECLabPy.utils.mapping import (
            get_clp_mapping_from_tc_mapping,
            get_superpixel_mapping,
            get_tm_mapping,
        )

        self.sp_mapping = get_superpixel_mapping(
            get_clp_mapping_from_tc_mapping(self.m))

        self.xpix = np.array(self.sp_mapping.xpix)
        self.ypix = np.array(self.sp_mapping.ypix)
        self.xmap = np.array(self.sp_mapping.row)
        self.ymap = np.array(self.sp_mapping.col)
        print(self.xmap.shape, self.ymap.shape)
        self.map = np.zeros((24, 24), dtype=np.uint64)
        for i in range(512):
            self.map[self.xmap[i], self.ymap[i]] = i

        self.map = self.map.flatten()
        from ssdaq.data._dataimpl.trigger_format import (
            get_SP2bptrigg_mapping,
            get_bptrigg2SP_mapping,
        )

        self.bptmap = get_bptrigg2SP_mapping()
        self.timer = QtCore.QTimer()
        self.timer.timeout.connect(self.updateplots)
        self.timer.start(self._interval)

        self.tr_listener = subscribers.BasicTriggerSubscriber(port=port, ip=ip)
        self.tr_listener.start()
Ejemplo n.º 8
0
def main():
    paths = dict(
        d190502=
        "/Volumes/ICYBOX/astri_onsky_archive/d2019-06-10_ledflashers/flasher_comparison_May-June/unit0pattern-low_r1.tio",
        d190508=
        "/Volumes/ICYBOX/astri_onsky_archive/d2019-06-10_ledflashers/flasher_comparison_May-June/Run13270_r1.tio",
        d190610=
        "/Volumes/ICYBOX/astri_onsky_archive/d2019-06-10_ledflashers/flasher_comparison_May-June/Run13401_r1.tio",
    )
    readers = {
        key: TIOReader(path, max_events=100)
        for key, path in paths.items()
    }
    waveforms = {key: reader[:].mean(0) for key, reader in readers.items()}
    mapping = get_superpixel_mapping(readers['d190502'].mapping)

    pixelmasks = dict(d190428T2149=PixelMasks(
        get_calib_data("pixel_masks/d190428T2149.dat")), )

    # Calculate coeff
    waveforms_coeff = waveforms['d190502']
    n_pixels, n_samples = waveforms_coeff.shape
    n_sp = n_pixels // 4
    waveforms_sp = waveforms_coeff.reshape((n_sp, 4, n_samples)).sum(1)
    coeff = (waveforms_sp.max(1).mean() / waveforms_sp.max(1))[:, None]

    sp_waveforms = {
        key: wfs.reshape((n_sp, 4, n_samples)).sum(1)
        for key, wfs in waveforms.items()
    }
    sp_waveforms_cal = {key: wfs * coeff for key, wfs in sp_waveforms.items()}

    trigger_off = dict()
    for key, wfs in sp_waveforms_cal.items():
        amplitude = wfs.max(1)
        median = np.median(amplitude)
        threshold = median * 1.10
        trigger_off[key] = amplitude > threshold

    trigger_off['d190610'][[
        355, 356, 357, 358, 359, 382, 375, 460, 459, 457, 458, 465, 289, 489,
        502, 254, 247, 154, 144, 56, 46, 39, 24, 25, 76
    ]] = True

    for key, sp in trigger_off.items():
        print(f"{key}: f{np.where(sp)}")

    plots = GetPlot(mapping)
    plots['d190428T2149'].highlight_pixels(trigger_off['d190502'])
    plots['d190428T2149'].plot_waveforms(sp_waveforms['d190502'])
    plots['d190428T2149'].save(get_plot("d190611_led_flasher/led/d190502.pdf"))
    plots['d190428T2149'].plot_waveforms(sp_waveforms_cal['d190502'])
    plots['d190428T2149'].save(
        get_plot("d190611_led_flasher/coeff/d190502.pdf"))
    plots['d190428T2149'].reset_pixel_highlight()

    plots['d190428T2149'].highlight_pixels(trigger_off['d190508'])
    plots['d190428T2149'].plot_waveforms(sp_waveforms['d190508'])
    plots['d190428T2149'].save(get_plot("d190611_led_flasher/led/d190508.pdf"))
    plots['d190428T2149'].plot_waveforms(sp_waveforms_cal['d190508'])
    plots['d190428T2149'].save(
        get_plot("d190611_led_flasher/coeff/d190508.pdf"))
    plots['d190428T2149'].reset_pixel_highlight()

    plots['d190428T2149'].highlight_pixels(trigger_off['d190610'])
    plots['d190428T2149'].plot_waveforms(sp_waveforms['d190610'])
    plots['d190428T2149'].save(get_plot("d190611_led_flasher/led/d190610.pdf"))
    plots['d190428T2149'].plot_waveforms(sp_waveforms_cal['d190610'])
    plots['d190428T2149'].save(
        get_plot("d190611_led_flasher/coeff/d190610.pdf"))
    plots['d190428T2149'].reset_pixel_highlight()

    hv_off = [24, 453]
    hv_off_array = np.zeros(n_sp, dtype=bool)
    hv_off_array[hv_off] = True
    trigger_off_array = np.zeros(n_sp, dtype=bool)
    trigger_off_array[trigger_off['d190610']] = True
    df = pd.DataFrame(
        dict(
            superpixel=np.arange(n_sp),
            hv_on=(~hv_off_array).astype(int),
            trigger_off=trigger_off_array.astype(int),
        ))
    df.to_csv(get_plot("d190611_led_flasher/hv_list.txt"),
              sep='\t',
              index=False)