def run_model(param_updates, n_steps=200, lockdown_at=None):
    params = setup_params(param_updates)
    # Create an instance of the Model
    model = Model(params)
    m_out = []
    for step in trange(n_steps):
        # Evaluate each step and save the results
        model.one_time_step()
        # LOGGER.info(
        #     model.one_time_step_results()
        # )  # If we want to see the results as we go uncomment this block
        m_out.append(model.one_time_step_results())
        if lockdown_at:
            if step == lockdown_at:
                model.update_running_params("lockdown_on", 1)
                LOGGER.info(f"turning on lock down at step {step}")
                LOGGER.info(
                    f'lockdown_house_interaction_multiplier = {params.get_param("lockdown_house_interaction_multiplier")}'
                )
                LOGGER.info(
                    f'lockdown_random_network_multiplier = {params.get_param("lockdown_random_network_multiplier")}'
                )
                for oc_net in OccupationNetworkEnum:
                    LOGGER.info(
                        f'lockdown_occupation_multiplier{oc_net.name} = {params.get_param(f"lockdown_occupation_multiplier{oc_net.name}")}'
                    )
    df = pd.DataFrame(m_out)
    model.write_output_files()
    return df
Ejemplo n.º 2
0
 def test_run_model_read_prama_file_false(self):
     all_params = pd.read_csv("tests/data/baseline_parameters.csv")
     p = Parameters(
         read_param_file=False,
         input_households="tests/data/baseline_household_demographics.csv",
     )
     for key in all_params:
         value = all_params[key][0]
         try:
             p.set_param(key, float(value))
         except TypeError:
             p.set_param(key, int(value))
     m = Model(p)
     m.one_time_step()
     assert m.one_time_step_results()["time"] == 1