Ejemplo n.º 1
0
	def __init__(self):
		self.node_name = rospy.get_name()
		rospy.loginfo("[%s] Initializing......" % (self.node_name))


		self.bridge = CvBridge()
		# Thread lock
		self.thread_lock = threading.Lock()

		self.active = True
		self.verbose = True

		self.car = CarDriver()
		self.white_lane_his = []
		self.yellow_lane_his = []
		self.red_lane_his = []		

		self.avg_num = 5

		# self.stats = Stats()

		# Only be verbose every 10 cycles
		self.intermittent_interval = 5
		self.intermittent_counter = 0

		fstream = file(rospkg.RosPack().get_path('line_detector')+'/include/line_detector/config/default.yaml', 'r')
		configuration = yaml.load(fstream)

		self.detector = LineDetectorHSV(configuration['detector'][1]['configuration'])
		self.detector_used = self.detector
		self.image_size = [120,160]
		self.top_cutoff = 40
		self.sub_rect = rospy.Subscriber("/camera_node/image_rect", Image, self.cbImage, queue_size=1)
		self.pub_image = rospy.Publisher("~image_with_lines",Image,queue_size=1)
		self.pub_edge = rospy.Publisher("~image_with_edge",Image,queue_size=1)
		self.pub_colorSegment = rospy.Publisher("~image_color_segment",Image,queue_size=1)
		self.pub_lines = rospy.Publisher("~segment_list", SegmentList, queue_size=1)
		rospy.loginfo("[%s] Initialized." % (self.node_name))
Ejemplo n.º 2
0
class WheelsDriverNode(object):
    def __init__(self):
        self.node_name = rospy.get_name()
        rospy.loginfo("[%s] Initializing " %(self.node_name))
        self.estop=False

        # Parameters for maximal turning radius
        self.use_rad_lim        =   self.setupParam("~use_rad_lim", False)
        self.min_rad            =   self.setupParam("~min_rad", 0.08)
        self.wheel_distance     =   self.setupParam("~wheel_distance", 0.103)

        # Setup publishers
        # self.driver = DaguWheelsDriver()
        self.driver = CarDriver()

        #add publisher for wheels command wih execution time
        self.msg_wheels_cmd = WheelsCmdStamped()
        self.pub_wheels_cmd = rospy.Publisher("~wheels_cmd_executed",WheelsCmdStamped, queue_size=1)

        # Setup subscribers
        self.control_constant = 1.0
        self.sub_topic = rospy.Subscriber("~wheels_cmd", WheelsCmdStamped, self.cbWheelsCmd, queue_size=1)
        self.sub_e_stop = rospy.Subscriber("~emergency_stop", BoolStamped, self.cbEStop, queue_size=1)
        self.sub_rad_lim = rospy.Subscriber("~radius_limit", BoolStamped, self.cbRadLimit, queue_size=1)

        self.params_update = rospy.Timer(rospy.Duration.from_sec(1.0), self.updateParams)

    def setupParam(self,param_name,default_value):
        value = rospy.get_param(param_name,default_value)
        rospy.set_param(param_name,value) #Write to parameter server for transparancy
        rospy.loginfo("[%s] %s = %s " %(self.node_name,param_name,value))
        return value

    def updateParams(self,event):
        self.use_rad_lim        =   rospy.get_param("~use_rad_lim")
        self.min_rad            =   rospy.get_param("~min_rad")
        self.wheel_distance     =   rospy.get_param("~wheel_distance")

    def cbWheelsCmd(self,msg):
        if self.estop:
            self.driver.setWheelsSpeed(left=0.0,right=0.0)
            return

        # Check if radius limitation is enabled
        if (self.use_rad_lim and (msg.vel_left != 0 or msg.vel_right != 0)):
            self.checkAndAdjustRadius(msg)


        self.driver.setWheelsSpeed(left=msg.vel_left,right=msg.vel_right)
        # Put the wheel commands in a message and publish
        self.msg_wheels_cmd.header = msg.header
        # Record the time the command was given to the wheels_driver
        self.msg_wheels_cmd.header.stamp = rospy.get_rostime()
        self.msg_wheels_cmd.vel_left = msg.vel_left
        self.msg_wheels_cmd.vel_right = msg.vel_right
        self.pub_wheels_cmd.publish(self.msg_wheels_cmd)

    def cbRadLimit(self, msg):
        rospy.set_param("~use_rad_lim", msg.data)
        self.use_rad_lim = msg.data

    def checkAndAdjustRadius(self, msg):
        didAdjustment = False
        # if both motor cmds do not have the same sign, we're demanding for an on-point turn (not allowed)
        if (np.sign(msg.vel_left) != np.sign(msg.vel_right)):

            # Simply set the smaller velocity to zero
            if (abs(msg.vel_left) < abs(msg.vel_right)):
                msg.vel_left = 0.0
            else:
                msg.vel_right = 0.0

            didAdjustment = True

        # set v1, v2 from msg velocities such that v2 > v1
        if (abs(msg.vel_right) > abs(msg.vel_left)):
            v1 = msg.vel_left
            v2 = msg.vel_right
        else:
            v1 = msg.vel_right
            v2 = msg.vel_left

        # Check if a smaller radius than allowed is demanded
        if (v1 == 0 or abs(v2 / v1) > (self.min_rad + self.wheel_distance/2.0)/(self.min_rad - self.wheel_distance/2.0)):

            # adjust velocities evenly such that condition is fulfilled
            delta_v = (v2-v1)/2 - self.wheel_distance/(4*self.min_rad)*(v1+v2)
            v1 += delta_v
            v2 -= delta_v
            didAdjustment = True

        # set msg velocities from v1, v2 with the same mapping as when we set v1, v2
        if (abs(msg.vel_right) > abs(msg.vel_left)):
            msg.vel_left = v1
            msg.vel_right = v2
        else:
            msg.vel_left = v2
            msg.vel_right = v1

        return didAdjustment


    def cbEStop(self,msg):
        self.estop=not self.estop
        if self.estop:
            rospy.loginfo("[%s] Emergency Stop Activated")
        else:
            rospy.loginfo("[%s] Emergency Stop Released")

    def on_shutdown(self):
        self.driver.setWheelsSpeed(left=0.0,right=0.0)
        rospy.loginfo("[%s] Shutting down."%(rospy.get_name()))
Ejemplo n.º 3
0
class DemoCar(object):
    """docstring for DemoCar"""
    def __init__(self):
        super(DemoCar, self).__init__()
        self.image = None
        self.active = True
        self.rector = ImageRector()
        self.car = CarDriver()
        self.captured = 0
        self.processed = 0
        self.speed = 0.8
        self.random_dir = -1

    # thread.start_new_thread(camera_node.startCaptureCompressed, ())
    def start_capture(self, rate=30):
        self.capture = cv2.VideoCapture(0)
        self.capture.set(cv2.CAP_PROP_FPS, 30)
        self.last_update = time.time()
        print('capture start')
        self.capture_time = time.time()
        while self.active:
            ret, self.image = self.capture.read()
            end = time.time()
            self.captured = self.captured + 1
            self.last_update = end
            if self.captured % 150 == 0:
                # print('captured %d frame in %.2f s' % (150,(time.time() - self.capture_time)))
                self.capture_time = time.time()
            # print('capture last update: %.2f ms' % ((end-self.last_update)*1000))
            time.sleep(0.004)
        print('capture end')
        self.capture.release()

    def follow_yellow(self):
        lost_count = 0
        start = time.time()
        while self.image is None:
            print('capture not start')
            time.sleep(1)
            # 根据阈值找到对应颜色
        last_update = self.last_update
        self.process_time = time.time()
        while True:
            if self.last_update == last_update:
                print('image not update , skip')
                time.sleep(0.005)
                continue
            # print('run last update %.2f ms' % (time.time() - self.last_update))
            self.processed = self.processed + 1
            if self.processed % 150 == 0:
                print('processed %d frame in %.2f s' %
                      (150, (time.time() - self.process_time)))
                self.process_time = time.time()
            image = self.image
            image = self.rector.rect(image)
            image = cv2.resize(image, (320, 240))
            image_raw = cv2.flip(image, -1)
            image = image_raw[120:140, :]
            # cnt_r = detect_cnt(image,[])
            cnt_y = detect_cnt(image, yellow_hsv)
            if cnt_y is not None:
                # print('yellow')
                # y_center,y_wh,y_angle = cv2.minAreaRect(cnt_y)
                # print(y_center,y_wh,y_angle)
                x, y, w, h = cv2.boundingRect(cnt_y)
                y_center = [x + w / 2, y + h / 2]
                cv2.drawContours(image, [cnt_y],
                                 -1, (0, 255, 255),
                                 thickness=2)
                offset = 70 - y_center[0]
                bias = offset / 160.0
                self.speed = 1.0 * (1 - bias)
                if self.speed < 0.8:
                    self.speed = 0.8
                left = self.speed * (1 - bias)
                right = self.speed * (1 + bias)
                self.car.setWheelsSpeed(left, right)
                lost_count = 0
            else:
                bias = 0.05 * self.random_dir
                left = self.speed * (1 - bias) * 0.5
                right = self.speed * (1 + bias) * 0.5
                # self.car.setWheelsSpeed(left,right)
                self.car.setWheelsSpeed(0, 0)
                self.random_dir = self.random_dir * -1
                # self.adjust_self()
                lost_count = lost_count + 1
                if lost_count > 15:
                    print('yellow line interrupt! at red line')
                    break
            image_raw[120:140, :] = image[:, :]
            cv2.imshow("images", image)
            # cv2.imshow("images", image_raw)
            # cv2.imshow("images", np.hstack([image, output]))
            c = cv2.waitKey(2)
            if c == 27:
                break

    def go_ahead_2_seconds(self):
        self.car.setWheelsSpeed(0.9, 0.9)
        time.sleep(2)
        self.car.setWheelsSpeed(0, 0)

    def go_ahead_and_stop(self):
        self.car.setWheelsSpeed(0.9, 0.9)
        time.sleep(1.8)
        self.car.setWheelsSpeed(0, 0)

    def go_ahead_and_detect_yellow(self):
        cnt_y = None
        self.car.setWheelsSpeed(0.6, 0.6)
        while cnt_y is None:
            image = self.image
            image = self.rector.rect(image)
            image = cv2.resize(image, (320, 240))
            image_raw = cv2.flip(image, -1)
            image = image_raw[120:140, :]
            # cnt_r = detect_cnt(image,[])
            cnt_y = detect_cnt(image, yellow_hsv)
            self.car.setWheelsSpeed(0.5, 0.5)
        self.car.setWheelsSpeed(0.3, 0.3)

    def turn_left(self):
        self.car.setWheelsSpeed(0.8, 0.8)
        time.sleep(2)
        self.car.setWheelsSpeed(0, 0.8)
        time.sleep(1)
        self.car.setWheelsSpeed(0.8, 0.8)
        time.sleep(1)
        car.setWheelsSpeed(0, 0)

    def turn_right(self):
        # self.car.setWheelsSpeed(0.5,0.5)
        # time.sleep(0.5)
        self.car.setWheelsSpeed(0.8, 0.3)
        time.sleep(1.5)
        car.setWheelsSpeed(0, 0)

    def adjust_self(self):
        image = self.image
        image = cv2.resize(image, (320, 240))
        cnt_r = detect_cnt(image, yellow_hsv)
        if cnt_r is not None:
            print('red')
            r_center, r_wh, r_angle = cv2.minAreaRect(cnt_r)
            print(r_center, r_wh, r_angle)
Ejemplo n.º 4
0
#!coding:utf-8
# 单线循迹,默认识别黄线,使用hsv颜色空间
import numpy as np
import argparse
import cv2
import time
import thread
from image_rector import ImageRector

from Car import CarDriver
car = CarDriver()
# capture = cv2.VideoCapture(0)
# fps = capture.get(cv2.CAP_PROP_FPS)
# print('frame rate : %d fps' % (fps) )
# capture.set(cv2.CAP_PROP_FPS,60)
# fps = capture.get(cv2.CAP_PROP_FPS)
# print('frame rate : %d fps' % (fps) )

red_hsv = [(np.array([0, 160, 50]), np.array([15, 255, 255])),
           (np.array([155, 160, 50]), np.array([180, 255, 255]))]
yellow_hsv = [(np.array([13, 70, 80]), np.array([55, 255, 255]))]
# green_hsv = [(np.array([46,160,50]),np.array([105,255,255]))]
green_hsv = [(np.array([56, 160, 46]), np.array([75, 255, 255]))]
white_hsv = [(np.array([0, 0, 221]), np.array([180, 255, 255])),
             (np.array([50, 0, 160]), np.array([95, 255, 255]))]

MIN_CNT_AREA = 200
MAX_CNT_AREA = 240 * 320 / 6


def detect_cnt(image, color_hsv):
Ejemplo n.º 5
0
class LaneDetectorNode:
	def __init__(self):
		self.node_name = rospy.get_name()
		rospy.loginfo("[%s] Initializing......" % (self.node_name))


		self.bridge = CvBridge()
		# Thread lock
		self.thread_lock = threading.Lock()

		self.active = True
		self.verbose = True

		self.car = CarDriver()
		self.white_lane_his = []
		self.yellow_lane_his = []
		self.red_lane_his = []		

		self.avg_num = 5

		# self.stats = Stats()

		# Only be verbose every 10 cycles
		self.intermittent_interval = 5
		self.intermittent_counter = 0

		fstream = file(rospkg.RosPack().get_path('line_detector')+'/include/line_detector/config/default.yaml', 'r')
		configuration = yaml.load(fstream)

		self.detector = LineDetectorHSV(configuration['detector'][1]['configuration'])
		self.detector_used = self.detector
		self.image_size = [120,160]
		self.top_cutoff = 40
		self.sub_rect = rospy.Subscriber("/camera_node/image_rect", Image, self.cbImage, queue_size=1)
		self.pub_image = rospy.Publisher("~image_with_lines",Image,queue_size=1)
		self.pub_edge = rospy.Publisher("~image_with_edge",Image,queue_size=1)
		self.pub_colorSegment = rospy.Publisher("~image_color_segment",Image,queue_size=1)
		rospy.loginfo("[%s] Initialized." % (self.node_name))

	def cbImage(self,image_msg):
		# self.sub_rect.unregister()
		image_cv = self.bridge.imgmsg_to_cv2(image_msg, desired_encoding="bgr8")
		hei_original, wid_original = image_cv.shape[0:2]

		if self.image_size[0] != hei_original or self.image_size[1] != wid_original:
			# image_cv = cv2.GaussianBlur(image_cv, (5,5), 2)
			image_cv = cv2.resize(image_cv, (self.image_size[1], self.image_size[0]),
								   interpolation=cv2.INTER_NEAREST)
		image_cv = image_cv[self.top_cutoff:,:,:]

		# Set the image to be detected
		self.detector_used.setImage(image_cv)

		# Detect lines and normals
		white = self.detector_used.detectLines('white')
		yellow = self.detector_used.detectLines('yellow')
		red = self.detector_used.detectLines('red')

		# print(white.lines)
		white_c = len(white.lines)
		yellow_c = len(yellow.lines)
		red_c = len(red.lines)
		# white_lane = np.zeros(3)
		# yellow_lane = np.zeros(3)
		# red_lane = np.zeros(3)
		white_lane = [0,0,0]
		yellow_lane = [0,0,0]
		red_lane = [0,0,0]
		if white_c > 0:
			white_lane = self.detectLane2NoWeights(white)

		if yellow_c > 0 :	
			yellow_lane = self.detectLane2NoWeights(yellow)		
		if red_c > 0 :
			red_lane = self.detectLane2NoWeights(red)		

		self.intermittent_counter += 1
		# self.drive(white_lane,yellow_lane,red_lane)
		print('white d:%6f phi:%6f n:%3d , yellow d:%6f phi:%6f n:%3d , red d:%6f phi:%6f n:%3d ' % (white_lane[0],white_lane[1],
			white_c,yellow_lane[0],yellow_lane[1], yellow_c, red_lane[0],red_lane[1] , red_c))
		
		if self.verbose:
			# print('line_detect_node: verbose is on!')

			# Draw lines and normals
			image_with_lines = np.copy(image_cv)
			drawLines(image_with_lines, white.lines, (0, 0, 0))
			drawLines(image_with_lines, yellow.lines, (255, 0, 0))
			drawLines(image_with_lines, red.lines, (0, 255, 0))

			# Publish the frame with lines
			image_msg_out = self.bridge.cv2_to_imgmsg(image_with_lines, "bgr8")
			image_msg_out.header.stamp = image_msg.header.stamp
			self.pub_image.publish(image_msg_out)

			colorSegment = color_segment(white.area, red.area, yellow.area)
			edge_msg_out = self.bridge.cv2_to_imgmsg(self.detector_used.edges, "mono8")
			colorSegment_msg_out = self.bridge.cv2_to_imgmsg(colorSegment, "bgr8")
			self.pub_edge.publish(edge_msg_out)
			self.pub_colorSegment.publish(colorSegment_msg_out)
	def onShutdown(self):
		rospy.loginfo("[%s] Shutdown." % (self.node_name))
	def detectLane2(self,detections):
		lines = np.array(detections.lines)*1.0
		n_lines = len(lines)
		points = np.zeros((n_lines*2,3))
		for i,line in enumerate(lines):
			x1,y1,x2,y2 = line
			vector = np.array([ x2 - x1, y2-y1] )
			weights = np.linalg.norm(vector)
			points[i*2] = x1,y1,weights
			points[i*2+1] = x2,y2,weights
		weights_total = points[:,2].sum()
		# print(lines)
		# print(points)
		x_m = (points[:,0]*points[:,2]).sum()/weights_total
		y_m = (points[:,1]*points[:,2]).sum()/weights_total
		m = ((points[:,0] - x_m)*(points[:,1]-y_m)*points[:,2]).sum()
		n = ((points[:,0] - x_m)*(points[:,0] - x_m)*points[:,2]).sum()
		a = m/n
		b = y_m - a * x_m
		phi = np.arctan(a)/np.pi*360
		d1 = (80*a-80+b)/np.linalg.norm(np.array([a,-1])) #画面底部中点到直线的距离
		if a == 0:
			d2 = 9999
		else:
			d2 = (80-b)/a -80 #直线与画面底部(y=80)的交点横坐标
		return  d2 , phi , n_lines
	def detectLane2NoWeights(self,detections):
		lines = np.array(detections.lines)*1.0
		n_lines = len(lines)
		points = np.zeros((n_lines*2,3))
		for i,line in enumerate(lines):
			x1,y1,x2,y2 = line
			vector = np.array([ x2 - x1, y2-y1] )
			weights = np.linalg.norm(vector)
			points[i*2] = x1,y1,weights/2
			points[i*2+1] = x2,y2,weights/2
		weights_total = points[:,2].sum()
		x_m = points[:,0].mean()
		y_m = points[:,1].mean()
		# print("x_m:%f y_m:%f" % (x_m,y_m))
		m = ((points[:,0] - x_m)*(points[:,1]-y_m)).sum()
		n = ((points[:,0] - x_m)*(points[:,0] - x_m)).sum()
		a = m/n
		b = y_m - a * x_m
		phi = np.arctan(a)/np.pi*360
		d1 = (80*a-80+b)/np.linalg.norm(np.array([a,-1])) #画面底部中点到直线的距离
		if a == 0:
			d2 = 9999
		else:
			d2 = (80-b)/a - 80 #直线与画面底部(y=80)的交点横坐标距中心的距离
		return  d2 , phi , n_lines
		# return b , a , n_lines

	def drive(self,white_lane,yellow_lane,red_lane):
		# return
		if white_lane[2] > 10 and yellow_lane[2] > 10:
			self.car.setWheelsSpeed(0.5,0.5)
		elif white_lane[2] > 10 and yellow_lane[2] < 10:
			self.car.setWheelsSpeed(0.4,0.7)
		elif white_lane[2] < 10 and yellow_lane[2] > 10:
			self.car.setWheelsSpeed(0.7,0.4)
		return		
		white_lane_mean = [0,0,0]
		yellow_lane_mean = [0,0,0]
		red_lane_mean = [0,0,0]
		if white_lane[2]>0:
			self.white_lane_his.append(white_lane)
			if len(self.white_lane_his)>=self.avg_num:
				self.white_lane_his = self.white_lane_his[-self.avg_num:]
			white_lane_mean = np.mean(np.array(self.white_lane_his),0)
		else:
			self.white_lane_his = []
		if yellow_lane[2]>0:
			self.yellow_lane_his.append(yellow_lane)
			if len(self.yellow_lane_his)>=self.avg_num:
				self.yellow_lane_his = self.yellow_lane_his[-self.avg_num:]
			yellow_lane_mean = np.mean(np.array(self.yellow_lane_his),0)
		else:
			self.yellow_lane_mean = []
		if red_lane[2]>0:
			self.red_lane_his.append(red_lane)
			if len(self.red_lane_his)>=self.avg_num:
				self.red_lane_his = self.red_lane_his[-self.avg_num:]
			red_lane_mean = np.mean(np.array(self.red_lane_his),0)
		else:
			self.red_lane_mean = []