Ejemplo n.º 1
0
    def __init__(self):

        # LQR to stabilize pole in the starting phase
        self.lqr_controller = controller_lqr()

        self.horizon = mpc_horizon

        self.Predictor = predictor(horizon=self.horizon, dt=DT)

        self.rnn_eval_time = []
        self.predictor_time = []
        self.nfun = []

        # I do the norm and unnorm unnecessarilly!
        # You need only to scale once!
        """
        Get configured do-mpc modules:
        """

        # State of the cart
        self.s = create_cartpole_state()  # s like state

        self.target_position = 0.0

        self.Q_hat = np.zeros(self.horizon)  # MPC prediction of future control inputs
        self.Q_hat0 = np.random.normal(0.0, 0.1 ,self.horizon)  # initial guess for future control inputs to be predicted
        self.Q_previous = 0.0

        self.angle_cost = lambda angle: angle ** 2
        self.angle_sin_cost = lambda angle_sin: angle_sin ** 2
        self.angleD_cost = lambda angleD: angleD ** 2
        self.position_cost = lambda position: (position - self.target_position) ** 2
        self.positionD_cost = lambda positionD: positionD ** 2

        self.Q_bounds = scipy.optimize.Bounds(lb=-1.0, ub=1.0)

        self.initial_state = create_cartpole_state()

        self.prediction_features_names = cartpole_state_indices_to_varnames(range(len(self.s)))
        self.predictions = np.zeros((self.horizon + 1, len(self.prediction_features_names) + 1))

        # Array keeping individual costs for every timestep of prediction
        self.costs_names = ['angle_cost', 'angle_sin_cost', 'angleD_cost', 'position_cost', 'positionD_cost']
        self.cost_array = np.zeros((self.horizon + 1, len(self.costs_names) + 1))

        # Numbers of samples which should be bridged with output from a P controller
        # To give RNN time to settle
        self.warm_up_len = 0
        self.sample_counter = 0  # Counting samples for above aim
    def __init__(self):
        """
        Get configured do-mpc modules:
        """

        # State of the cart
        self.s = create_cartpole_state()  # s like state

        self.target_position = 0.0

        self.mpc_horizon = mpc_horizon
        self.dt = dt_mpc_simulation

        self.yp_hat = np.zeros(self.mpc_horizon,
                               dtype=object)  # MPC prediction of future states
        self.Q_hat = np.zeros(
            self.mpc_horizon)  # MPC prediction of future control inputs
        self.Q_hat0 = np.zeros(
            self.mpc_horizon
        )  # initial guess for future control inputs to be predicted
        self.Q_previous = 0.0

        self.E_kin_cart = lambda s: (s[POSITIOND_IDX] / v_max)**2
        self.E_kin_pol = lambda s: (s[ANGLED_IDX] / (2 * np.pi))**2
        self.E_pot_cost = lambda s: 1 - np.cos(s[ANGLE_IDX])
        self.distance_difference = lambda s: ((
            (s[POSITION_IDX] - self.target_position) / TrackHalfLength))**2

        self.Q_bounds = [(-1, 1)] * self.mpc_horizon
Ejemplo n.º 3
0
def get_prediction_for_testing_gui_from_euler(a,
                                              dataset,
                                              dt_sampling,
                                              dt_sampling_by_dt_fine=1):

    # region In either case testing is done on a data collected offline
    output_array = np.zeros(shape=(a.test_max_horizon + 1, a.test_len,
                                   len(a.features) + 1))

    Q = dataset['Q'].to_numpy()
    Q_array = [Q[i:-a.test_max_horizon + i] for i in range(a.test_max_horizon)]
    Q_array = np.vstack(Q_array)
    output_array[:-1, :, -1] = Q_array
    print('Calculating predictions...')

    FEATURES_INDICES = cartpole_state_varnames_to_indices(a.features)

    for timestep in trange(a.test_len):

        state_dict = dataset.loc[dataset.index[[timestep]], :].to_dict(
            'records')[0]
        s = create_cartpole_state(state_dict)
        output_array[0, timestep, :-1] = s[FEATURES_INDICES]
        # Progress max_horison steps
        # save the data for every step in a third dimension of an array
        for i in range(0, a.test_max_horizon):
            Q = Q_array[i, timestep]
            u = Q2u(Q)

            for _ in range(dt_sampling_by_dt_fine):

                angleDD, positionDD = cartpole_ode_numba(s, u)

                t_step = (dt_sampling / float(dt_sampling_by_dt_fine))
                # Calculate next state
                s[POSITION_IDX] += s[POSITIOND_IDX] * t_step
                s[POSITIOND_IDX] += positionDD * t_step
                s[ANGLE_IDX] += s[ANGLED_IDX] * t_step
                s[ANGLED_IDX] += angleDD * t_step

                s[ANGLE_IDX] = \
                    wrap_angle_rad(s[ANGLE_IDX])

            # Append s to outputs matrix
            s[ANGLE_COS_IDX] = np.cos(s[ANGLE_IDX])
            s[ANGLE_SIN_IDX] = np.sin(s[ANGLE_IDX])

            output_array[i + 1, timestep, :-1] = s[FEATURES_INDICES]

    output_array = np.swapaxes(output_array, 0, 1)
    # time_axis is a time axis for ground truth
    return output_array
    def __init__(self):
        """Random number generator"""
        SEED = config["controller"]["mppi"]["SEED"]
        if SEED == "None":
            SEED = int(
                (datetime.now() - datetime(1970, 1, 1)).total_seconds() *
                1000.0)  # Fully random
        self.rng_mppi = Generator(SFC64(SEED))
        self.rng_mppi_rnn = Generator(
            SFC64(SEED * 2)
        )  # There are some random numbers used at warm up of rnn only. Separate rng prevents a shift

        global dd_weight, ep_weight, ekp_weight, ekc_weight, cc_weight
        dd_weight = dd_weight * (1 +
                                 dd_noise * self.rng_mppi.uniform(-1.0, 1.0))
        ep_weight = ep_weight * (1 +
                                 ep_noise * self.rng_mppi.uniform(-1.0, 1.0))
        ekp_weight = ekp_weight * (
            1 + ekp_noise * self.rng_mppi.uniform(-1.0, 1.0))
        ekc_weight = ekc_weight * (
            1 + ekc_noise * self.rng_mppi.uniform(-1.0, 1.0))
        cc_weight = cc_weight * (1 +
                                 cc_noise * self.rng_mppi.uniform(-1.0, 1.0))

        # State of the cart
        self.s = create_cartpole_state()

        self.target_position = 0.0

        self.rho_sqrt_inv = 0.01

        self.iteration = -1
        self.control_enabled = True

        self.s_horizon = np.zeros((), dtype=np.float32)
        self.u = np.zeros((mpc_samples), dtype=np.float32)
        self.u_prev = np.zeros_like(self.u, dtype=np.float32)
        self.delta_u = np.zeros((num_rollouts, mpc_samples), dtype=np.float32)
        self.S_tilde_k = np.zeros((num_rollouts), dtype=np.float32)

        self.wash_out_len = WASH_OUT_LEN
        self.warm_up_countdown = self.wash_out_len
        try:
            from Controllers.controller_lqr import controller_lqr

            self.auxiliary_controller_available = True
            self.auxiliary_controller = controller_lqr()
        except ModuleNotFoundError:
            self.auxiliary_controller_available = False
            self.auxiliary_controller = None

        self.auxiliary_controller_available = False
def cartpole_integration(s, angleDD, positionDD, dt):
    """
    Simple single step integration of CartPole state by dt

    Takes state as numpy array.

    :param s: state of the CartPole (position, positionD, angle, angleD must be set). Array order follows global definition.
    :param dt: time step by which the CartPole state should be integrated
    """
    s_next = create_cartpole_state()

    s_next[POSITION_IDX] = s[POSITION_IDX] + s[POSITIOND_IDX] * dt
    s_next[POSITIOND_IDX] = s[POSITIOND_IDX] + positionDD * dt

    s_next[ANGLE_IDX] = s[ANGLE_IDX] + s[ANGLED_IDX] * dt
    s_next[ANGLED_IDX] = s[ANGLED_IDX] + angleDD * dt

    return s_next
    def finish_thread(self):

        self.CartPoleInstance.use_pregenerated_target_position = False
        self.initial_state = create_cartpole_state()
        self.initial_position_slider.setValue(0)
        self.initial_angle_slider.setValue(0)
        self.CartPoleInstance.s = self.initial_state

        # Some controllers may collect they own statistics about their usage and print it after experiment terminated
        if self.simulator_mode != 'Replay':
            try:
                self.CartPoleInstance.controller.controller_report()
            except:
                pass

        if self.show_experiment_summary:
            self.w_summary = SummaryWindow(
                summary_plots=self.CartPoleInstance.summary_plots)

        # Reset variables and redraw the figures
        self.reset_variables(0)

        # Draw figures
        self.CartPoleInstance.draw_constant_elements(self.fig, self.fig.AxCart,
                                                     self.fig.AxSlider)
        self.canvas.draw()

        # Enable back all elements of GUI:
        self.cb_save_history.setEnabled(True)
        self.cb_show_experiment_summary.setEnabled(True)
        for rb in self.rbs_simulator_mode:
            rb.setEnabled(True)
        for rb in self.rbs_controllers:
            rb.setEnabled(True)

        self.start_or_stop_action = "START!"  # What should happen when "START! / STOP!" is pushed NEXT time
The convention:
Pole upright position defines 0 angle
Cart movement to the right is positive
Clockwise angle rotation is defined as negative

Required angle convention for CartPole GUI: CLOCK-NEG
"""

ANGLE_CONVENTION = 'CLOCK-NEG'
"""Defines if a clockwise angle change is negative ('CLOCK-NEG') or positive ('CLOCK-POS')

The 0-angle state is always defined as pole in upright position. This currently cannot be changed
"""

# Create initial state vector
s0 = create_cartpole_state()


def _cartpole_ode(ca,
                  sa,
                  angleD,
                  positionD,
                  u,
                  k=k,
                  M=M,
                  m=m,
                  g=g,
                  J_fric=J_fric,
                  M_fric=M_fric,
                  L=L):
    """
    def __init__(self, *args, **kwargs):
        super(MainWindow, self).__init__(*args, **kwargs)

        # region Create CartPole instance and load initial settings

        # Create CartPole instance
        self.initial_state = create_cartpole_state()
        self.CartPoleInstance = CartPole(initial_state=self.initial_state)

        # Set timescales
        self.CartPoleInstance.dt_simulation = dt_simulation
        self.CartPoleInstance.dt_controller = controller_update_interval
        self.CartPoleInstance.dt_save = save_interval

        # set other settings
        self.CartPoleInstance.set_controller(controller_init)
        self.CartPoleInstance.stop_at_90 = stop_at_90_init
        self.set_random_experiment_generator_init_params()

        # endregion

        # region Decide whether to save the data in "CartPole memory" or not
        self.save_history = save_history_init
        self.show_experiment_summary = show_experiment_summary_init
        if self.save_history or self.show_experiment_summary:
            self.CartPoleInstance.save_data_in_cart = True
        else:
            self.CartPoleInstance.save_data_in_cart = False

        # endregion

        # region Other variables initial values as provided in gui_default_parameters.py

        # Start user controlled experiment/ start random experiment/ load and replay - on start button
        self.simulator_mode = simulator_mode_init
        self.slider_on_click = slider_on_click_init  # Update slider on click/update slider while hoovering over it
        self.speedup = speedup_init  # Default simulation speed-up

        # endregion

        # region Initialize loop-timer
        # This timer allows to relate the simulation time to user time
        # And (if your computer is fast enough) run simulation
        # slower or faster than real-time by predefined factor (speedup)
        self.looper = loop_timer(
            dt_target=(self.CartPoleInstance.dt_simulation / self.speedup))
        # endregion

        # region Variables controlling the state of various processes (DO NOT MODIFY)

        self.terminate_experiment_or_replay_thread = False  # True: gives signal causing thread to terminate
        self.pause_experiment_or_replay_thread = False  # True: gives signal causing the thread to pause

        self.run_set_labels_thread = True  # True if gauges (labels) keep being repeatedly updated
        # Stop threads by setting False

        # Flag indicating if the "START! / STOP!" button should act as start or as stop when pressed.
        # Can take values "START!" or "STOP!"
        self.start_or_stop_action = "START!"
        # Flag indicating whether the pause button should pause or unpause.
        self.pause_or_unpause_action = "PAUSE"

        # Flag indicating that saving of experiment recording to csv file has finished
        self.experiment_or_replay_thread_terminated = False

        self.user_time_counter = 0  # Measures the user time

        # Slider instant value (which is draw in GUI) differs from value saved in CartPole instance
        # if the option updating slider "on-click" is enabled.
        self.slider_instant_value = self.CartPoleInstance.slider_value

        self.noise = 'OFF'
        self.CartPoleInstance.NoiseAdderInstance.noise_mode = self.noise

        # endregion

        # region Create GUI Layout

        # region - Create container for top level layout
        layout = QVBoxLayout()
        # endregion

        # region - Change geometry of the main window
        self.setGeometry(300, 300, 2500, 1000)
        # endregion

        # region - Matplotlib figures (CartPole drawing and Slider)
        # Draw Figure
        self.fig = Figure(
            figsize=(25, 10)
        )  # Regulates the size of Figure in inches, before scaling to window size.
        self.canvas = FigureCanvas(self.fig)
        self.fig.AxCart = self.canvas.figure.add_subplot(211)
        self.fig.AxSlider = self.canvas.figure.add_subplot(212)
        self.fig.AxSlider.set_ylim(0, 1)

        self.CartPoleInstance.draw_constant_elements(self.fig, self.fig.AxCart,
                                                     self.fig.AxSlider)

        # Attach figure to the layout
        lf = QVBoxLayout()
        lf.addWidget(self.canvas)

        # endregion

        # region - Radio buttons selecting current controller
        self.rbs_controllers = []
        for controller_name in self.CartPoleInstance.controller_names:
            self.rbs_controllers.append(QRadioButton(controller_name))

        # Ensures that radio buttons are exclusive
        self.controllers_buttons_group = QButtonGroup()
        for button in self.rbs_controllers:
            self.controllers_buttons_group.addButton(button)

        lr_c = QVBoxLayout()
        lr_c.addStretch(1)
        for rb in self.rbs_controllers:
            rb.clicked.connect(self.RadioButtons_controller_selection)
            lr_c.addWidget(rb)
        lr_c.addStretch(1)

        self.rbs_controllers[self.CartPoleInstance.controller_idx].setChecked(
            True)

        # endregion

        # region - Create central part of the layout for figures and radio buttons and add it to the whole layout
        lc = QHBoxLayout()
        lc.addLayout(lf)
        lc.addLayout(lr_c)
        layout.addLayout(lc)

        # endregion

        # region - Gauges displaying current values of various states and parameters (time, velocity, angle,...)

        # First row
        ld = QHBoxLayout()
        # User time
        self.labTime = QLabel("User's time (s): ")
        self.timer = QTimer()
        self.timer.setInterval(100)  # Tick every 1/10 of the second
        self.timer.timeout.connect(self.set_user_time_label)
        self.timer.start()
        ld.addWidget(self.labTime)
        # Speed, angle, motor power (Q)
        self.labSpeed = QLabel('Speed (m/s):')
        self.labAngle = QLabel('Angle (deg):')
        self.labMotor = QLabel('')
        self.labTargetPosition = QLabel('')
        ld.addWidget(self.labSpeed)
        ld.addWidget(self.labAngle)
        ld.addWidget(self.labMotor)
        ld.addWidget(self.labTargetPosition)
        layout.addLayout(ld)

        # Second row of labels
        # Simulation time, Measured (real) speed-up, slider-value
        ld2 = QHBoxLayout()
        self.labTimeSim = QLabel('Simulation Time (s):')
        ld2.addWidget(self.labTimeSim)
        self.labSpeedUp = QLabel('Speed-up (measured):')
        ld2.addWidget(self.labSpeedUp)
        self.labSliderInstant = QLabel('')
        ld2.addWidget(self.labSliderInstant)
        layout.addLayout(ld2)

        # endregion

        # region - Buttons "START!" / "STOP!", "PAUSE", "QUIT"
        self.bss = QPushButton("START!")
        self.bss.pressed.connect(self.start_stop_button)
        self.bp = QPushButton("PAUSE")
        self.bp.pressed.connect(self.pause_unpause_button)
        bq = QPushButton("QUIT")
        bq.pressed.connect(self.quit_application)
        lspb = QHBoxLayout()  # Sub-Layout for Start/Stop and Pause Buttons
        lspb.addWidget(self.bss)
        lspb.addWidget(self.bp)

        # endregion

        # region - Sliders setting initial state and buttons for kicking the pole

        # Sliders setting initial position and angle
        lb = QVBoxLayout()  # Layout for buttons
        lb.addLayout(lspb)
        lb.addWidget(bq)
        ip = QHBoxLayout()  # Layout for initial position sliders
        self.initial_position_slider = QSlider(
            orientation=Qt.Orientation.Horizontal)
        self.initial_position_slider.setRange(
            -int(float(1000 * TrackHalfLength)),
            int(float(1000 * TrackHalfLength)))
        self.initial_position_slider.setValue(0)
        self.initial_position_slider.setSingleStep(1)
        self.initial_position_slider.valueChanged.connect(
            self.update_initial_position)
        self.initial_angle_slider = QSlider(
            orientation=Qt.Orientation.Horizontal)
        self.initial_angle_slider.setRange(-int(float(100 * np.pi)),
                                           int(float(100 * np.pi)))
        self.initial_angle_slider.setValue(0)
        self.initial_angle_slider.setSingleStep(1)
        self.initial_angle_slider.valueChanged.connect(
            self.update_initial_angle)
        ip.addWidget(QLabel("Initial position:"))
        ip.addWidget(self.initial_position_slider)
        ip.addWidget(QLabel("Initial angle:"))
        ip.addWidget(self.initial_angle_slider)
        ip.addStretch(0.01)

        # Slider setting latency
        self.LATENCY_SLIDER_RANGE_INT = 1000
        self.latency_slider = QSlider(orientation=Qt.Orientation.Horizontal)
        self.latency_slider.setRange(0, self.LATENCY_SLIDER_RANGE_INT)
        self.latency_slider.setValue(
            int(self.CartPoleInstance.LatencyAdderInstance.latency *
                self.LATENCY_SLIDER_RANGE_INT /
                self.CartPoleInstance.LatencyAdderInstance.max_latency))
        self.latency_slider.setSingleStep(1)
        self.latency_slider.valueChanged.connect(self.update_latency)
        ip.addWidget(QLabel("Latency:"))
        ip.addWidget(self.latency_slider)
        self.labLatency = QLabel('Latency (ms): {:.1f}'.format(
            self.CartPoleInstance.LatencyAdderInstance.latency * 1000))
        ip.addWidget(self.labLatency)

        # Buttons activating noise
        self.rbs_noise = []
        for mode_name in ['ON', 'OFF']:
            self.rbs_noise.append(QRadioButton(mode_name))

        # Ensures that radio buttons are exclusive
        self.noise_buttons_group = QButtonGroup()
        for button in self.rbs_noise:
            self.noise_buttons_group.addButton(button)

        lr_n = QHBoxLayout()
        lr_n.addWidget(QLabel('Noise:'))
        for rb in self.rbs_noise:
            rb.clicked.connect(self.RadioButtons_noise_on_off)
            lr_n.addWidget(rb)

        self.rbs_noise[1].setChecked(True)

        ip.addStretch(0.01)
        ip.addLayout(lr_n)
        ip.addStretch(0.01)

        # Buttons giving kick to the pole
        kick_label = QLabel("Kick pole:")
        kick_left_button = QPushButton()
        kick_left_button.setText("Left")
        kick_left_button.adjustSize()
        kick_left_button.clicked.connect(self.kick_pole)
        kick_right_button = QPushButton()
        kick_right_button.setText("Right")
        kick_right_button.adjustSize()
        kick_right_button.clicked.connect(self.kick_pole)
        ip.addWidget(kick_label)
        ip.addWidget(kick_left_button)
        ip.addWidget(kick_right_button)

        lb.addLayout(ip)
        layout.addLayout(lb)

        # endregion

        # region - Text boxes and Combobox to provide settings concerning generation of random experiment
        l_generate_trace = QHBoxLayout()
        l_generate_trace.addWidget(QLabel('Random experiment settings:'))
        l_generate_trace.addWidget(QLabel('Length (s):'))
        self.textbox_length = QLineEdit()
        l_generate_trace.addWidget(self.textbox_length)
        l_generate_trace.addWidget(QLabel('Turning Points (m):'))
        self.textbox_turning_points = QLineEdit()
        l_generate_trace.addWidget(self.textbox_turning_points)
        l_generate_trace.addWidget(QLabel('Interpolation:'))
        self.cb_interpolation = QComboBox()
        self.cb_interpolation.addItems(
            ['0-derivative-smooth', 'linear', 'previous'])
        self.cb_interpolation.currentIndexChanged.connect(
            self.cb_interpolation_selectionchange)
        self.cb_interpolation.setCurrentText(
            self.CartPoleInstance.interpolation_type)
        l_generate_trace.addWidget(self.cb_interpolation)

        layout.addLayout(l_generate_trace)

        # endregion

        # region - Textbox to provide csv file name for saving or loading data
        l_text = QHBoxLayout()
        textbox_title = QLabel('CSV file name:')
        self.textbox = QLineEdit()
        l_text.addWidget(textbox_title)
        l_text.addWidget(self.textbox)
        layout.addLayout(l_text)

        # endregion

        # region - Make strip of layout for checkboxes
        l_cb = QHBoxLayout()
        # endregion

        # region - Textbox to provide the target speed-up value
        l_text_speedup = QHBoxLayout()
        tx_speedup_title = QLabel('Speed-up (target):')
        self.tx_speedup = QLineEdit()
        l_text_speedup.addWidget(tx_speedup_title)
        l_text_speedup.addWidget(self.tx_speedup)
        self.tx_speedup.setText(str(self.speedup))
        l_cb.addLayout(l_text_speedup)

        self.wrong_speedup_msg = QMessageBox()
        self.wrong_speedup_msg.setWindowTitle("Speed-up value problem")
        self.wrong_speedup_msg.setIcon(QMessageBox.Icon.Critical)
        # endregion

        # region - Checkboxes

        # region -- Checkbox: Save/don't save experiment recording
        self.cb_save_history = QCheckBox('Save results', self)
        if self.save_history:
            self.cb_save_history.toggle()
        self.cb_save_history.toggled.connect(self.cb_save_history_f)
        l_cb.addWidget(self.cb_save_history)
        # endregion

        # region -- Checkbox: Display plots showing dynamic evolution of the system as soon as experiment terminates
        self.cb_show_experiment_summary = QCheckBox('Show experiment summary',
                                                    self)
        if self.show_experiment_summary:
            self.cb_show_experiment_summary.toggle()
        self.cb_show_experiment_summary.toggled.connect(
            self.cb_show_experiment_summary_f)
        l_cb.addWidget(self.cb_show_experiment_summary)
        # endregion

        # region -- Checkbox: Block pole if it reaches +/-90 deg
        self.cb_stop_at_90_deg = QCheckBox('Stop-at-90-deg', self)
        if self.CartPoleInstance.stop_at_90:
            self.cb_stop_at_90_deg.toggle()
        self.cb_stop_at_90_deg.toggled.connect(self.cb_stop_at_90_deg_f)
        l_cb.addWidget(self.cb_stop_at_90_deg)
        # endregion

        # region -- Checkbox: Update slider on click/update slider while hoovering over it
        self.cb_slider_on_click = QCheckBox('Update slider on click', self)
        if self.slider_on_click:
            self.cb_slider_on_click.toggle()
        self.cb_slider_on_click.toggled.connect(self.cb_slider_on_click_f)
        l_cb.addWidget(self.cb_slider_on_click)

        # endregion

        # endregion

        # region - Radio buttons selecting simulator mode: user defined experiment, random experiment, replay

        # List available simulator modes - constant
        self.available_simulator_modes = [
            'Slider-Controlled Experiment', 'Random Experiment', 'Replay'
        ]
        self.rbs_simulator_mode = []
        for mode_name in self.available_simulator_modes:
            self.rbs_simulator_mode.append(QRadioButton(mode_name))

        # Ensures that radio buttons are exclusive
        self.simulator_mode_buttons_group = QButtonGroup()
        for button in self.rbs_simulator_mode:
            self.simulator_mode_buttons_group.addButton(button)

        lr_sm = QHBoxLayout()
        lr_sm.addStretch(1)
        lr_sm.addWidget(QLabel('Simulator mode:'))
        for rb in self.rbs_simulator_mode:
            rb.clicked.connect(self.RadioButtons_simulator_mode)
            lr_sm.addWidget(rb)
        lr_sm.addStretch(1)

        self.rbs_simulator_mode[self.available_simulator_modes.index(
            self.simulator_mode)].setChecked(True)

        l_cb.addStretch(1)
        l_cb.addLayout(lr_sm)
        l_cb.addStretch(1)

        # endregion

        # region - Add checkboxes to layout
        layout.addLayout(l_cb)
        # endregion

        # region - Create an instance of a GUI window
        w = QWidget()
        w.setLayout(layout)
        self.setCentralWidget(w)
        self.show()
        self.setWindowTitle('CartPole Simulator')

        # endregion

        # endregion

        # region Open controller-specific popup windows
        self.open_additional_controller_widget()
        # endregion

        # region Activate functions capturing mouse movements and clicks over the slider

        # This line links function capturing the mouse position on the canvas of the Figure
        self.canvas.mpl_connect("motion_notify_event", self.on_mouse_movement)
        # This line links function capturing the mouse position on the canvas of the Figure click
        self.canvas.mpl_connect("button_press_event", self.on_mouse_click)

        # endregion

        # region Introducing multithreading
        # To ensure smooth functioning of the app,
        # the calculations and redrawing of the figures have to be done in a different thread
        # than the one capturing the mouse position and running the animation
        self.threadpool = QThreadPool()
        # endregion

        # region Starts a thread repeatedly redrawing gauges (labels) of the GUI
        # It runs till the QUIT button is pressed
        worker_labels = Worker(self.set_labels_thread)
        self.threadpool.start(worker_labels)
        # endregion

        # region Start animation repeatedly redrawing changing elements of matplotlib figures (CartPole drawing and slider)
        # This animation runs ALWAYS when the GUI is open
        # The buttons of GUI only decide if new parameters are calculated or not
        self.anim = self.CartPoleInstance.run_animation(self.fig)
    def __init__(self, dt, intermediate_steps):
        self.s = create_cartpole_state()

        self.intermediate_steps = intermediate_steps
        self.t_step = np.float32(dt / float(self.intermediate_steps))
    def __init__(self, dt, intermediate_steps):
        self.s = tf.convert_to_tensor(create_cartpole_state())

        self.intermediate_steps = tf.convert_to_tensor(intermediate_steps, dtype=tf.int32)
        self.t_step = tf.convert_to_tensor(dt / float(self.intermediate_steps), dtype=tf.float32)