Ejemplo n.º 1
0
    def change_threshold(self, transects, data_type, threshold):
        """Function to change the threshold for accepting the increment median as valid.  The threshold
        is in percent of the median number of points in all increments"""

        self.threshold = threshold
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 2
0
    def change_extents(self, transects, data_type, extents):
        """Function allows the data to be subsection by specifying the percent cumulative discharge
        for the start and end points.  Currently this function does not consider transect direction"""

        self.subsection = extents
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 3
0
    def update_q_sensitivity(self, transects):
        """Updates the discharge sensitivity values.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        """
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects, self.sel_fit)
Ejemplo n.º 4
0
    def change_data_type(self, transects, data_type):
        """Changes the data type to be processed in extrap.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        """
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 5
0
    def change_data_auto(self, transects):
        """Changes the data selection settings to automatic.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        """
        self.threshold = 20
        self.subsection = [0, 100]
        self.process_profiles(transects=transects, data_type='q')

        # Compute the sensitivity of the final discharge to changes in extrapolation methods
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 6
0
    def change_extents(self, transects, data_type, extents):
        """Function allows the data to be subsection by specifying the percent cumulative discharge
        for the start and end points.  Currently this function does not consider transect direction.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        extents: list
            List containing two values, the minimum and maximum discharge percentages to subsectioning
        """

        self.subsection = extents
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 7
0
    def change_threshold(self, transects, data_type, threshold):
        """Function to change the threshold for accepting the increment median as valid.  The threshold
        is in percent of the median number of points in all increments.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        threshold: float
            Percent of data that must be in a median to include the median in the fit algorithm
        """

        self.threshold = threshold
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)
Ejemplo n.º 8
0
    def populate_data(self, transects, compute_sensitivity=True):
        """Store data in instance variables.

        Parameters
        ----------
        transects: list
            List of transects of TransectData
        compute_sensitivity: bool
            Determines is sensitivity should be computed.
        """

        self.threshold = 20
        self.subsection = [0, 100]
        self.fit_method = 'Automatic'
        self.process_profiles(transects=transects, data_type='q')
        # Compute the sensitivity of the final discharge to changes in extrapolation methods
        if compute_sensitivity:
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_data(transects=transects,
                                             extrap_fits=self.sel_fit)
Ejemplo n.º 9
0
    def populate_from_qrev_mat(self, meas_struct):
        """Populates the object using data from previously saved QRev Matlab file.

        Parameters
        ----------
        meas_struct: mat_struct
           Matlab data structure obtained from sio.loadmat
        """

        if hasattr(meas_struct, 'extrapFit'):
            self.threshold = meas_struct.extrapFit.threshold
            self.subsection = meas_struct.extrapFit.subsection
            self.fit_method = meas_struct.extrapFit.fitMethod
            self.norm_data = NormData.qrev_mat_in(meas_struct.extrapFit)
            self.sel_fit = SelectFit.qrev_mat_in(meas_struct.extrapFit)
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_from_qrev_mat(meas_struct.extrapFit)
            if type(meas_struct.extrapFit.messages) is str:
                self.messages = [meas_struct.extrapFit.messages]
            elif type(meas_struct.extrapFit.messages) is np.ndarray:
                self.messages = meas_struct.extrapFit.messages.tolist()
Ejemplo n.º 10
0
    def change_fit_method(self,
                          transects,
                          new_fit_method,
                          idx,
                          top=None,
                          bot=None,
                          exponent=None,
                          compute_qsens=True):
        """Function to change the extrapolation method.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        new_fit_method: str
            Identifies fit method automatic or manual
        idx: int
            Index to the specified transect or measurement in NormData
        top: str
            Specifies top fit
        bot: str
            Specifies bottom fit
        exponent: float
            Specifies exponent for power or no slip fits
        compute_qsens: bool
            Specifies if the discharge sensitivities should be recomputed
        """
        self.fit_method = new_fit_method

        self.sel_fit[idx].populate_data(self.norm_data[idx],
                                        new_fit_method,
                                        top=top,
                                        bot=bot,
                                        exponent=exponent)
        if compute_qsens & idx == len(self.norm_data) - 1:
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_data(transects, self.sel_fit)
Ejemplo n.º 11
0
class ComputeExtrap(object):
    """Class to compute the optimized or manually specified extrapolation methods

    Attributes
    ----------
    threshold: float
        Threshold as a percent for determining if a median is valid
    subsection: list
        Percent of discharge, does not account for transect direction
    fit_method: str
        Method used to determine fit.  Automatic or manual
    norm_data: NormData
        Object of class NormData
    sel_fit: SelectFit
        Object of class SelectFit
    q_sensitivity: ExtrapQSensitivity
        Object of class ExtrapQSensitivity
    messages: str
        Variable for messages to UserWarning

    """
    def __init__(self):
        """Initialize instance variables."""

        self.threshold = None  # Threshold as a percent for determining if a median is valid
        self.subsection = None  # Percent of discharge, does not account for transect direction
        self.fit_method = None  # Method used to determine fit.  Automatic or manual
        self.norm_data = []  # Object of class norm data
        self.sel_fit = []  # Object of class SelectFit
        self.q_sensitivity = None  # Object of class ExtrapQSensitivity
        self.messages = []  # Variable for messages to UserWarning

    def populate_data(self, transects, compute_sensitivity=True):
        """Store data in instance variables.

        Parameters
        ----------
        transects: list
            List of transects of TransectData
        compute_sensitivity: bool
            Determines is sensitivity should be computed.
        """

        self.threshold = 20
        self.subsection = [0, 100]
        self.fit_method = 'Automatic'
        self.process_profiles(transects=transects, data_type='q')
        # Compute the sensitivity of the final discharge to changes in extrapolation methods
        if compute_sensitivity:
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_data(transects=transects,
                                             extrap_fits=self.sel_fit)

    def process_profiles(self, transects, data_type):
        """Function that coordinates the fitting process.

        Parameters
        ----------
        transects: TransectData
            Object of TransectData
        data_type: str
            Type of data processing (q or v)
        """

        # Compute normalized data for each transect
        self.norm_data = []
        for transect in transects:
            norm_data = NormData()
            norm_data.populate_data(transect=transect,
                                    data_type=data_type,
                                    threshold=self.threshold,
                                    data_extent=self.subsection)
            self.norm_data.append(norm_data)

        # Compute composite normalized data
        comp_data = NormData()
        comp_data.create_composite(transects=transects,
                                   norm_data=self.norm_data,
                                   threshold=self.threshold)
        self.norm_data.append(comp_data)
        sel_fit = None

        # Compute the fit for the selected  method
        self.sel_fit = []
        if self.fit_method == 'Manual':
            for n in range(len(transects)):
                sel_fit = SelectFit()
                sel_fit.populate_data(normalized=self.norm_data[n],
                                      fit_method=self.fit_method,
                                      transect=transects[n])
                self.sel_fit.append(sel_fit)
        else:
            for n in range(len(self.norm_data)):
                sel_fit = SelectFit()
                sel_fit.populate_data(self.norm_data[n], self.fit_method)
                self.sel_fit.append(sel_fit)

        if sel_fit.top_fit_r2 is not None:
            # Evaluate if there is a potential that a 3-point top method may be appropriate
            if (sel_fit.top_fit_r2 > 0.9 or sel_fit.top_r2 > 0.9) and np.abs(
                    sel_fit.top_max_diff) > 0.2:
                self.messages.append(
                    'The measurement profile may warrant a 3-point fit at the top'
                )

    def update_q_sensitivity(self, transects):
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects, self.sel_fit)

    def change_fit_method(self, transect, new_fit_method, n, kargs=None):
        # TODO this function needs to be thought through only appears to be needed for setting individual transects to view in extrap window
        """Function to change the extrapolation methods associated with single transect"""
        self.fit_method = new_fit_method
        self.sel_fit = SelectFit()
        self.sel_fit.populate_data(self.norm_data, new_fit_method, kargs)
        # self.q_sensitivity = ExtrapQSensitivity()
        # self.q_sensitivity.populate_data(trans_data, self.sel_fit)

    def change_threshold(self, transects, data_type, threshold):
        """Function to change the threshold for accepting the increment median as valid.  The threshold
        is in percent of the median number of points in all increments"""

        self.threshold = threshold
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)

    def change_extents(self, transects, data_type, extents):
        """Function allows the data to be subsection by specifying the percent cumulative discharge
        for the start and end points.  Currently this function does not consider transect direction"""

        self.subsection = extents
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)

    def change_data_type(self, trans_data, data_type):
        self.process_profiles(trans_data, data_type)
        self.q_sensitivity = ExtrapQSensitivity(trans_data, self.selfit)
Ejemplo n.º 12
0
 def change_data_type(self, trans_data, data_type):
     self.process_profiles(trans_data, data_type)
     self.q_sensitivity = ExtrapQSensitivity(trans_data, self.selfit)
Ejemplo n.º 13
0
 def update_q_sensitivity(self, transects):
     self.q_sensitivity = ExtrapQSensitivity()
     self.q_sensitivity.populate_data(transects, self.sel_fit)
Ejemplo n.º 14
0
class ComputeExtrap(object):
    """Class to compute the optimized or manually specified extrapolation methods

    Attributes
    ----------
    threshold: float
        Threshold as a percent for determining if a median is valid
    subsection: list
        Percent of discharge, does not account for transect direction
    fit_method: str
        Method used to determine fit.  Automatic or manual
    norm_data: NormData
        Object of class NormData
    sel_fit: SelectFit
        Object of class SelectFit
    q_sensitivity: ExtrapQSensitivity
        Object of class ExtrapQSensitivity
    messages: str
        Variable for messages to UserWarning

    """
    def __init__(self):
        """Initialize instance variables."""

        self.threshold = None  # Threshold as a percent for determining if a median is valid
        self.subsection = None  # Percent of discharge, does not account for transect direction
        self.fit_method = None  # Method used to determine fit.  Automatic or manual
        self.norm_data = []  # Object of class norm data
        self.sel_fit = []  # Object of class SelectFit
        self.q_sensitivity = None  # Object of class ExtrapQSensitivity
        self.messages = []  # Variable for messages to UserWarning

    def populate_data(self, transects, compute_sensitivity=True):
        """Store data in instance variables.

        Parameters
        ----------
        transects: list
            List of transects of TransectData
        compute_sensitivity: bool
            Determines is sensitivity should be computed.
        """

        self.threshold = 20
        self.subsection = [0, 100]
        self.fit_method = 'Automatic'
        self.process_profiles(transects=transects, data_type='q')

        # Compute the sensitivity of the final discharge to changes in extrapolation methods
        if compute_sensitivity:
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_data(transects=transects,
                                             extrap_fits=self.sel_fit)

    def populate_from_qrev_mat(self, meas_struct):
        """Populates the object using data from previously saved QRev Matlab file.

        Parameters
        ----------
        meas_struct: mat_struct
           Matlab data structure obtained from sio.loadmat
        """

        if hasattr(meas_struct, 'extrapFit'):
            self.threshold = meas_struct.extrapFit.threshold
            self.subsection = meas_struct.extrapFit.subsection
            self.fit_method = meas_struct.extrapFit.fitMethod
            self.norm_data = NormData.qrev_mat_in(meas_struct.extrapFit)
            self.sel_fit = SelectFit.qrev_mat_in(meas_struct.extrapFit)
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_from_qrev_mat(meas_struct.extrapFit)
            if type(meas_struct.extrapFit.messages) is str:
                self.messages = [meas_struct.extrapFit.messages]
            elif type(meas_struct.extrapFit.messages) is np.ndarray:
                self.messages = meas_struct.extrapFit.messages.tolist()

    def process_profiles(self, transects, data_type):
        """Function that coordinates the fitting process.

        Parameters
        ----------
        transects: TransectData
            Object of TransectData
        data_type: str
            Type of data processing (q or v)
        """

        # Compute normalized data for each transect
        self.norm_data = []
        for transect in transects:
            norm_data = NormData()
            norm_data.populate_data(transect=transect,
                                    data_type=data_type,
                                    threshold=self.threshold,
                                    data_extent=self.subsection)
            self.norm_data.append(norm_data)

        # Compute composite normalized data
        comp_data = NormData()
        comp_data.create_composite(transects=transects,
                                   norm_data=self.norm_data,
                                   threshold=self.threshold)
        self.norm_data.append(comp_data)

        # Compute the fit for the selected  method
        if self.fit_method == 'Manual':
            for n in range(len(transects)):
                self.sel_fit[n].populate_data(
                    normalized=self.norm_data[n],
                    fit_method=self.fit_method,
                    top=transects[n].extrap.top_method,
                    bot=transects[n].extrap.bot_method,
                    exponent=transects[n].extrap.exponent)
        else:
            self.sel_fit = []
            for n in range(len(self.norm_data)):
                sel_fit = SelectFit()
                sel_fit.populate_data(self.norm_data[n], self.fit_method)
                self.sel_fit.append(sel_fit)

        if self.sel_fit[-1].top_fit_r2 is not None:
            # Evaluate if there is a potential that a 3-point top method may be appropriate
            if (self.sel_fit[-1].top_fit_r2 > 0.9 or self.sel_fit[-1].top_r2 > 0.9) \
                    and np.abs(self.sel_fit[-1].top_max_diff) > 0.2:
                self.messages.append(
                    'The measurement profile may warrant a 3-point fit at the top'
                )

    def update_q_sensitivity(self, transects):
        """Updates the discharge sensitivity values.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        """
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects, self.sel_fit)

    def change_fit_method(self,
                          transects,
                          new_fit_method,
                          idx,
                          top=None,
                          bot=None,
                          exponent=None,
                          compute_qsens=True):
        """Function to change the extrapolation method.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        new_fit_method: str
            Identifies fit method automatic or manual
        idx: int
            Index to the specified transect or measurement in NormData
        top: str
            Specifies top fit
        bot: str
            Specifies bottom fit
        exponent: float
            Specifies exponent for power or no slip fits
        compute_qsens: bool
            Specifies if the discharge sensitivities should be recomputed
        """
        self.fit_method = new_fit_method

        self.sel_fit[idx].populate_data(self.norm_data[idx],
                                        new_fit_method,
                                        top=top,
                                        bot=bot,
                                        exponent=exponent)
        if compute_qsens & idx == len(self.norm_data) - 1:
            self.q_sensitivity = ExtrapQSensitivity()
            self.q_sensitivity.populate_data(transects, self.sel_fit)

    def change_threshold(self, transects, data_type, threshold):
        """Function to change the threshold for accepting the increment median as valid.  The threshold
        is in percent of the median number of points in all increments.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        threshold: float
            Percent of data that must be in a median to include the median in the fit algorithm
        """

        self.threshold = threshold
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)

    def change_extents(self, transects, data_type, extents):
        """Function allows the data to be subsection by specifying the percent cumulative discharge
        for the start and end points.  Currently this function does not consider transect direction.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        extents: list
            List containing two values, the minimum and maximum discharge percentages to subsectioning
        """

        self.subsection = extents
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)

    def change_data_type(self, transects, data_type):
        """Changes the data type to be processed in extrap.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        data_type: str
            Specifies the data type (discharge or velocity)
        """
        self.process_profiles(transects=transects, data_type=data_type)
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)

    def change_data_auto(self, transects):
        """Changes the data selection settings to automatic.

        Parameters
        ----------
        transects: list
            List of TransectData objects
        """
        self.threshold = 20
        self.subsection = [0, 100]
        self.process_profiles(transects=transects, data_type='q')

        # Compute the sensitivity of the final discharge to changes in extrapolation methods
        self.q_sensitivity = ExtrapQSensitivity()
        self.q_sensitivity.populate_data(transects=transects,
                                         extrap_fits=self.sel_fit)