def classifyCells(img, classifyCellsParameter = None, classifier = None, classindex = 0, save = None, verbose = False,
                  detectCellShapeParameter = None,
                  subStack = None, out = sys.stdout, **parameter):
    """Detect Cells Using a trained classifier in Ilastik
    
    The routine assumes that the first class is identifying the cells.
        
    Arguments:    
        img (array): image data
        classifyPixelParameter (dict):
            ============ ==================== ===========================================================
            Name         Type                 Descritption
            ============ ==================== ===========================================================
            *classifier* (str or  None)       Ilastik project file with trained pixel classifier
            *classindex* (int)                class index considered to be cells
            *save*       (str or None)        save the detected cell pixel to a file
            *verbose*    (bool or int)        print / plot information about this step 
            ============ ==================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
    
    Returns:
        tuple: centers of the cells, intensity measurments
        
    Note:    
        The routine could be potentially refined to make use of background 
        detection in ilastik
    """
    
    classifier = getParameter(classifyCellsParameter, "classifier", classifier);
    classindex = getParameter(classifyCellsParameter, "classindex", classindex);
    save       = getParameter(classifyCellsParameter, "save", save);   
    verbose    = getParameter(classifyCellsParameter, "verbose", verbose);
     
    if verbose:
        writeParameter(out = out, head = 'Ilastik cell detection:', classifier = classifier, classindex = classindex, save = save);        

    timer = Timer(); 

    ilastik.isInitialized();
    
    #remove background
    #img = removeBackground(img, verbose = verbose, out = out, **parameter);
      
    #classify image / assume class 1 are the cells !  
    timer = Timer();  
    
    imgmax = ilastik.classifyPixel(classifier, img);
    #print imgmax.shape
    #max probability gives final class, last axis is class axis
    imgmax = numpy.argmax(imgmax, axis = -1);
    
    if save:
        writeSubStack(save, numpy.asarray(imgmax, dtype = 'float32'), subStack = subStack)    

    # class 0 is used as cells 
    imgmax = imgmax == classindex; # class 1 is used as cells 
    imgshape, nlab = sm.label(imgmax);
    
    if verbose > 1:
        plotTiling(imgmax);
        
    #center of maxima
    centers = findCenterOfMaxima(img, imgmax, imgshape, verbose = verbose, out = out, **parameter);
    
    #intensity of cells
    #cintensity = findIntensity(img, centers, verbose = verbose, out = out, **parameter);

    #intensity of cells in filtered image
    #cintensity2 = findIntensity(img, centers, verbose = verbose, out = out, **parameter);
    
    #if verbose:
    #    out.write(timer.elapsedTime(head = 'Ilastik cell detection') + '\n');    
    
    #return ( centers, numpy.vstack((cintensity, cintensity2)).transpose() );   
    #return ( centers, cintensity ); 
    
    
    #cell size detection
    #detectCellShapeParameter = getParameter(classifyCellsParameter, "detectCellShapeParameter", detectCellShapeParameter);
    #cellShapeThreshold = getParameter(detectCellShapeParameter, "threshold", None);
    
    #if not cellShapeThreshold is None:
        
    # cell shape via watershed
    #imgshape = detectCellShape(img, centers, detectCellShapeParameter = detectCellShapeParameter, verbose = verbose, out = out, **parameter);
    
    #size of cells        
    csize = findCellSize(imgshape, maxLabel = centers.shape[0], out = out, **parameter);
    
    #intensity of cells
    cintensity = findCellIntensity(img, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);

    #intensity of cells in background image
    #cintensity2 = findCellIntensity(img2, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);

    #intensity of cells in dog filtered image
    #if dogSize is None:
    #    cintensity3 = cintensity2;
    #else:
    #    cintensity3 = findCellIntensity(img3, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);
    
    if verbose:
        out.write(timer.elapsedTime(head = 'Ilastik Cell Detection') + '\n');
    
    #remove cell;s of size 0
    idz = csize > 0;
                   
    #return ( centers[idz], numpy.vstack((cintensity[idz], cintensity3[idz], cintensity2[idz], csize[idz])).transpose());        
    return ( centers[idz], numpy.vstack((cintensity[idz], csize[idz])).transpose() ); 
Ejemplo n.º 2
0
def detectSpots(img,
                detectSpotsParameter=None,
                correctIlluminationParameter=None,
                removeBackgroundParameter=None,
                filterDoGParameter=None,
                findExtendedMaximaParameter=None,
                detectCellShapeParameter=None,
                verbose=False,
                out=sys.stdout,
                **parameter):
    """Detect Cells in 3d grayscale image using DoG filtering and maxima detection
    
    Effectively this function performs the following steps:
        * illumination correction via :func:`~ClearMap.ImageProcessing.IlluminationCorrection.correctIllumination`
        * background removal via :func:`~ClearMap.ImageProcessing.BackgroundRemoval.removeBackground`
        * difference of Gaussians (DoG) filter via :func:`~ClearMap.ImageProcessing.Filter.filterDoG`
        * maxima detection via :func:`~ClearMap.ImageProcessing.MaximaDetection.findExtendedMaxima`
        * cell shape detection via :func:`~ClearMap.ImageProcessing.CellSizeDetection.detectCellShape`
        * cell intensity and size measurements via: :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellIntensity`,
          :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellSize`. 
    
    Note: 
        Processing steps are done in place to save memory.
        
    Arguments:
        img (array): image data
        detectSpotParameter: image processing parameter as described in the individual sub-routines
        verbose (bool): print progress information
        out (object): object to print progress information to
        
    Returns:
        tuple: tuple of arrays (cell coordinates, raw intensity, fully filtered intensty, illumination and background corrected intensity [, cell size])
    """

    timer = Timer()

    # correct illumination
    correctIlluminationParameter = getParameter(
        detectSpotsParameter, "correctIlluminationParameter",
        correctIlluminationParameter)
    img1 = img.copy()
    img1 = correctIllumination(
        img1,
        correctIlluminationParameter=correctIlluminationParameter,
        verbose=verbose,
        out=out,
        **parameter)

    # background subtraction in each slice
    #img2 = img.copy();
    removeBackgroundParameter = getParameter(detectSpotsParameter,
                                             "removeBackgroundParameter",
                                             removeBackgroundParameter)
    img2 = removeBackground(
        img1,
        removeBackgroundParameter=removeBackgroundParameter,
        verbose=verbose,
        out=out,
        **parameter)

    #DoG filter
    filterDoGParameter = getParameter(detectSpotsParameter,
                                      "filterDoGParameter", filterDoGParameter)
    dogSize = getParameter(filterDoGParameter, "size", None)
    #img3 = img2.copy();
    img3 = filterDoG(img2,
                     filterDoGParameter=filterDoGParameter,
                     verbose=verbose,
                     out=out,
                     **parameter)

    # extended maxima
    findExtendedMaximaParameter = getParameter(detectSpotsParameter,
                                               "findExtendedMaximaParameter",
                                               findExtendedMaximaParameter)
    hMax = getParameter(findExtendedMaximaParameter, "hMax", None)
    imgmax = findExtendedMaxima(
        img3,
        findExtendedMaximaParameter=findExtendedMaximaParameter,
        verbose=verbose,
        out=out,
        **parameter)

    #center of maxima
    if not hMax is None:
        centers = findCenterOfMaxima(img,
                                     imgmax,
                                     verbose=verbose,
                                     out=out,
                                     **parameter)
    else:
        centers = findPixelCoordinates(imgmax,
                                       verbose=verbose,
                                       out=out,
                                       **parameter)

    #cell size detection
    detectCellShapeParameter = getParameter(detectSpotsParameter,
                                            "detectCellShapeParameter",
                                            detectCellShapeParameter)
    cellShapeThreshold = getParameter(detectCellShapeParameter, "threshold",
                                      None)
    if not cellShapeThreshold is None:

        # cell shape via watershed
        imgshape = detectCellShape(
            img2,
            centers,
            detectCellShapeParameter=detectCellShapeParameter,
            verbose=verbose,
            out=out,
            **parameter)

        #size of cells
        csize = findCellSize(imgshape,
                             maxLabel=centers.shape[0],
                             out=out,
                             **parameter)

        #intensity of cells
        cintensity = findCellIntensity(img,
                                       imgshape,
                                       maxLabel=centers.shape[0],
                                       verbose=verbose,
                                       out=out,
                                       **parameter)

        #intensity of cells in background image
        cintensity2 = findCellIntensity(img2,
                                        imgshape,
                                        maxLabel=centers.shape[0],
                                        verbose=verbose,
                                        out=out,
                                        **parameter)

        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2
        else:
            cintensity3 = findCellIntensity(img3,
                                            imgshape,
                                            maxLabel=centers.shape[0],
                                            verbose=verbose,
                                            out=out,
                                            **parameter)

        if verbose:
            out.write(timer.elapsedTime(head="Spot Detection") + "\n")

        #remove cell;s of size 0
        idz = csize > 0

        return (centers[idz],
                numpy.vstack((cintensity[idz], cintensity3[idz],
                              cintensity2[idz], csize[idz])).transpose())

    else:
        #intensity of cells
        cintensity = findIntensity(img,
                                   centers,
                                   verbose=verbose,
                                   out=out,
                                   **parameter)

        #intensity of cells in background image
        cintensity2 = findIntensity(img2,
                                    centers,
                                    verbose=verbose,
                                    out=out,
                                    **parameter)

        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2
        else:
            cintensity3 = findIntensity(img3,
                                        centers,
                                        verbose=verbose,
                                        out=out,
                                        **parameter)

        if verbose:
            out.write(timer.elapsedTime(head="Spot Detection") + "\n")

        return (centers, numpy.vstack(
            (cintensity, cintensity3, cintensity2)).transpose())
Ejemplo n.º 3
0
def detectSpots(img,
                detectSpotsParameter=None,
                correctIlluminationParameter=None,
                removeBackgroundParameter=None,
                filterDoGParameter=None,
                findExtendedMaximaParameter=None,
                detectCellShapeParameter=None,
                verbose=False,
                out=sys.stdout,
                **parameter):
    """Detect Cells in 3d grayscale image using DoG filtering and maxima detection
    
    Effectively this function performs the following steps:
        * illumination correction via :func:`~ClearMap.ImageProcessing.IlluminationCorrection.correctIllumination`
        * background removal via :func:`~ClearMap.ImageProcessing.BackgroundRemoval.removeBackground`
        * difference of Gaussians (DoG) filter via :func:`~ClearMap.ImageProcessing.Filter.filterDoG`
        * maxima detection via :func:`~ClearMap.ImageProcessing.MaximaDetection.findExtendedMaxima`
        * cell shape detection via :func:`~ClearMap.ImageProcessing.CellSizeDetection.detectCellShape`
        * cell intensity and size measurements via: :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellIntensity`,
          :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellSize`. 
    detectCells
    Note: 
        Processing steps are done in place to save memory.
        
    Arguments:
        img (array): image data
        detectSpotParameter: image processing parameter as described in the individual sub-routines
        verbose (bool): print progress information
        out (object): object to print progress information to
        
    Returns:
        tuple: tuple of arrays (cell coordinates, raw intensity, fully filtered intensty, illumination and background corrected intensity [, cell size])
    """

    timer = Timer()

    # normalize data -> to check
    #img = img.astype('float');
    #dmax = 0.075 * 65535;
    #ids = img > dmax;
    #img[ids] = dmax;
    #img /= dmax;
    #out.write(timer.elapsedTime(head = 'Normalization'));
    #img = dataset[600:1000,1600:1800,800:830];
    #img = dataset[600:1000,:,800:830];

    # correct illumination
    correctIlluminationParameter = getParameter(
        detectSpotsParameter, "correctIlluminationParameter",
        correctIlluminationParameter)
    img1 = img.copy()
    img1 = correctIllumination(
        img1,
        correctIlluminationParameter=correctIlluminationParameter,
        verbose=verbose,
        out=out,
        **parameter)

    # background subtraction in each slice
    #img2 = img.copy();
    removeBackgroundParameter = getParameter(detectSpotsParameter,
                                             "removeBackgroundParameter",
                                             removeBackgroundParameter)
    img2 = removeBackground(
        img1,
        removeBackgroundParameter=removeBackgroundParameter,
        verbose=verbose,
        out=out,
        **parameter)

    # mask
    #timer.reset();
    #if mask == None: #explicit mask
    #    mask = img > 0.01;
    #    mask = binary_opening(mask, self.structureELement('Disk', (3,3,3)));
    #img[img < 0.01] = 0; # masking in place  # extended maxima
    #out.write(timer.elapsedTime(head = 'Mask'));

    #DoG filter
    filterDoGParameter = getParameter(detectSpotsParameter,
                                      "filterDoGParameter", filterDoGParameter)
    dogSize = getParameter(filterDoGParameter, "size", None)
    #img3 = img2.copy();
    img3 = filterDoG(img2,
                     filterDoGParameter=filterDoGParameter,
                     verbose=verbose,
                     out=out,
                     **parameter)

    # normalize
    #    imax = img.max();
    #    if imax == 0:
    #        imax = 1;
    #    img /= imax;

    # extended maxima
    findExtendedMaximaParameter = getParameter(detectSpotsParameter,
                                               "findExtendedMaximaParameter",
                                               findExtendedMaximaParameter)
    hMax = getParameter(findExtendedMaximaParameter, "hMax", None)
    imgmax = findExtendedMaxima(
        img3,
        findExtendedMaximaParameter=findExtendedMaximaParameter,
        verbose=verbose,
        out=out,
        **parameter)

    #center of maxima
    if not hMax is None:
        centers = findCenterOfMaxima(img,
                                     imgmax,
                                     verbose=verbose,
                                     out=out,
                                     **parameter)
    else:
        centers = findPixelCoordinates(imgmax,
                                       verbose=verbose,
                                       out=out,
                                       **parameter)

    #cell size detection
    detectCellShapeParameter = getParameter(detectSpotsParameter,
                                            "detectCellShapeParameter",
                                            detectCellShapeParameter)
    cellShapeThreshold = getParameter(detectCellShapeParameter, "threshold",
                                      None)
    if not cellShapeThreshold is None:

        # cell shape via watershed
        imgshape = detectCellShape(
            img2,
            centers,
            detectCellShapeParameter=detectCellShapeParameter,
            verbose=verbose,
            out=out,
            **parameter)

        #size of cells
        csize = findCellSize(imgshape,
                             maxLabel=centers.shape[0],
                             out=out,
                             **parameter)

        #intensity of cells
        cintensity = findCellIntensity(img,
                                       imgshape,
                                       maxLabel=centers.shape[0],
                                       verbose=verbose,
                                       out=out,
                                       **parameter)

        #intensity of cells in background image
        cintensity2 = findCellIntensity(img2,
                                        imgshape,
                                        maxLabel=centers.shape[0],
                                        verbose=verbose,
                                        out=out,
                                        **parameter)

        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2
        else:
            cintensity3 = findCellIntensity(img3,
                                            imgshape,
                                            maxLabel=centers.shape[0],
                                            verbose=verbose,
                                            out=out,
                                            **parameter)

        if verbose:
            out.write(timer.elapsedTime(head='Spot Detection') + '\n')

        #remove cell;s of size 0
        idz = csize > 0

        return (centers[idz],
                numpy.vstack((cintensity[idz], cintensity3[idz],
                              cintensity2[idz], csize[idz])).transpose())

    else:
        #intensity of cells
        cintensity = findIntensity(img,
                                   centers,
                                   verbose=verbose,
                                   out=out,
                                   **parameter)

        #intensity of cells in background image
        cintensity2 = findIntensity(img2,
                                    centers,
                                    verbose=verbose,
                                    out=out,
                                    **parameter)

        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2
        else:
            cintensity3 = findIntensity(img3,
                                        centers,
                                        verbose=verbose,
                                        out=out,
                                        **parameter)

        if verbose:
            out.write(timer.elapsedTime(head='Spot Detection') + '\n')

        return (centers, numpy.vstack(
            (cintensity, cintensity3, cintensity2)).transpose())
Ejemplo n.º 4
0
import os
import ClearMap.Settings as settings
filename = os.path.join(settings.ClearMapPath,
                        'Test/Data/ImageAnalysis/cfos-substack.tif')
import ClearMap.Visualization.Plot as plt
import ClearMap.IO as io
data = io.readData(filename, z=(0, 26))
import ClearMap.ImageProcessing.BackgroundRemoval as bgr
dataBGR = bgr.removeBackground(data.astype('float'), size=(3, 3), verbose=True)
from ClearMap.ImageProcessing.Filter.DoGFilter import filterDoG
dataDoG = filterDoG(dataBGR, size=(8, 8, 4), verbose=True)
from ClearMap.ImageProcessing.MaximaDetection import findExtendedMaxima
dataMax = findExtendedMaxima(dataDoG, hMax=None, verbose=True, threshold=10)
from ClearMap.ImageProcessing.MaximaDetection import findCenterOfMaxima
cells = findCenterOfMaxima(data, dataMax)
from ClearMap.ImageProcessing.CellSizeDetection import detectCellShape
dataShape = detectCellShape(dataDoG, cells, threshold=15)
from ClearMap.ImageProcessing.CellSizeDetection import findCellSize, findCellIntensity
cellSizes = findCellSize(dataShape, maxLabel=cells.shape[0])
cellIntensities = findCellIntensity(dataBGR,
                                    dataShape,
                                    maxLabel=cells.shape[0])
import matplotlib.pyplot as mpl
mpl.figure()
mpl.plot(cellSizes, cellIntensities, '.')
mpl.xlabel('cell size [voxel]')
mpl.ylabel('cell intensity [au]')
Ejemplo n.º 5
0
def detectSpots(img, detectSpotsParameter = None, correctIlluminationParameter = None, removeBackgroundParameter = None,
                filterDoGParameter = None, findExtendedMaximaParameter = None, detectCellShapeParameter = None,
                verbose = False, out = sys.stdout, **parameter):
    """Detect Cells in 3d grayscale image using DoG filtering and maxima detection
    
    Effectively this function performs the following steps:
        * illumination correction via :func:`~ClearMap.ImageProcessing.IlluminationCorrection.correctIllumination`
        * background removal via :func:`~ClearMap.ImageProcessing.BackgroundRemoval.removeBackground`
        * difference of Gaussians (DoG) filter via :func:`~ClearMap.ImageProcessing.Filter.filterDoG`
        * maxima detection via :func:`~ClearMap.ImageProcessing.MaximaDetection.findExtendedMaxima`
        * cell shape detection via :func:`~ClearMap.ImageProcessing.CellSizeDetection.detectCellShape`
        * cell intensity and size measurements via: :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellIntensity`,
          :func:`~ClearMap.ImageProcessing.CellSizeDetection.findCellSize`. 
    
    Note: 
        Processing steps are done in place to save memory.
        
    Arguments:
        img (array): image data
        detectSpotParameter: image processing parameter as described in the individual sub-routines
        verbose (bool): print progress information
        out (object): object to print progress information to
        
    Returns:
        tuple: tuple of arrays (cell coordinates, raw intensity, fully filtered intensty, illumination and background corrected intensity [, cell size])
    """

    timer = Timer();
    
    # normalize data -> to check
    #img = img.astype('float');
    #dmax = 0.075 * 65535;
    #ids = img > dmax;
    #img[ids] = dmax;
    #img /= dmax; 
    #out.write(timer.elapsedTime(head = 'Normalization'));
    #img = dataset[600:1000,1600:1800,800:830];
    #img = dataset[600:1000,:,800:830];
    
    # correct illumination
    correctIlluminationParameter = getParameter(detectSpotsParameter, "correctIlluminationParameter", correctIlluminationParameter);
    img1 = img.copy();
    img1 = correctIllumination(img1, correctIlluminationParameter = correctIlluminationParameter, verbose = verbose, out = out, **parameter)   

    # background subtraction in each slice
    #img2 = img.copy();
    removeBackgroundParameter = getParameter(detectSpotsParameter, "removeBackgroundParameter", removeBackgroundParameter);
    img2 = removeBackground(img1, removeBackgroundParameter = removeBackgroundParameter, verbose = verbose, out = out, **parameter)   
    
    # mask
    #timer.reset();
    #if mask == None: #explicit mask
    #    mask = img > 0.01;
    #    mask = binary_opening(mask, self.structureELement('Disk', (3,3,3)));
    #img[img < 0.01] = 0; # masking in place  # extended maxima
    #out.write(timer.elapsedTime(head = 'Mask'));    
    
    #DoG filter
    filterDoGParameter = getParameter(detectSpotsParameter, "filterDoGParameter", filterDoGParameter);
    dogSize = getParameter(filterDoGParameter, "size", None);
    #img3 = img2.copy();    
    img3 = filterDoG(img2, filterDoGParameter = filterDoGParameter, verbose = verbose, out = out, **parameter);
    
    # normalize    
    #    imax = img.max();
    #    if imax == 0:
    #        imax = 1;
    #    img /= imax;
    
    # extended maxima
    findExtendedMaximaParameter = getParameter(detectSpotsParameter, "findExtendedMaximaParameter", findExtendedMaximaParameter);
    hMax = getParameter(findExtendedMaximaParameter, "hMax", None);
    imgmax = findExtendedMaxima(img3, findExtendedMaximaParameter = findExtendedMaximaParameter, verbose = verbose, out = out, **parameter);
    
    #center of maxima
    if not hMax is None:
        centers = findCenterOfMaxima(img, imgmax, verbose = verbose, out = out, **parameter);
    else:
        centers = findPixelCoordinates(imgmax, verbose = verbose, out = out, **parameter);
    
    #cell size detection
    detectCellShapeParameter = getParameter(detectSpotsParameter, "detectCellShapeParameter", detectCellShapeParameter);
    cellShapeThreshold = getParameter(detectCellShapeParameter, "threshold", None);
    if not cellShapeThreshold is None:
        
        # cell shape via watershed
        imgshape = detectCellShape(img2, centers, detectCellShapeParameter = detectCellShapeParameter, verbose = verbose, out = out, **parameter);
        
        #size of cells        
        csize = findCellSize(imgshape, maxLabel = centers.shape[0], out = out, **parameter);
        
        #intensity of cells
        cintensity = findCellIntensity(img, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);

        #intensity of cells in background image
        cintensity2 = findCellIntensity(img2, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);
    
        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2;
        else:
            cintensity3 = findCellIntensity(img3, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);
        
        if verbose:
            out.write(timer.elapsedTime(head = 'Spot Detection') + '\n');
        
        #remove cell;s of size 0
        idz = csize > 0;
                       
        return ( centers[idz], numpy.vstack((cintensity[idz], cintensity3[idz], cintensity2[idz], csize[idz])).transpose());        
        
    
    else:
        #intensity of cells
        cintensity = findIntensity(img, centers, verbose = verbose, out = out, **parameter);

        #intensity of cells in background image
        cintensity2 = findIntensity(img2, centers, verbose = verbose, out = out, **parameter);
    
        #intensity of cells in dog filtered image
        if dogSize is None:
            cintensity3 = cintensity2;
        else:
            cintensity3 = findIntensity(img3, centers, verbose = verbose, out = out, **parameter);

        if verbose:
            out.write(timer.elapsedTime(head = 'Spot Detection') + '\n');
    
        return ( centers, numpy.vstack((cintensity, cintensity3, cintensity2)).transpose());
def classifyCells(img, classifyCellsParameter = None, classifier = None, classindex = 0, save = None, verbose = False,
                  detectCellShapeParameter = None,
                  subStack = None, out = sys.stdout, **parameter):
    """Detect Cells Using a trained classifier in Ilastik
    
    The routine assumes that the first class is identifying the cells.
        
    Arguments:    
        img (array): image data
        classifyPixelParameter (dict):
            ============ ==================== ===========================================================
            Name         Type                 Descritption
            ============ ==================== ===========================================================
            *classifier* (str or  None)       Ilastik project file with trained pixel classifier
            *classindex* (int)                class index considered to be cells
            *save*       (str or None)        save the detected cell pixel to a file
            *verbose*    (bool or int)        print / plot information about this step 
            ============ ==================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
    
    Returns:
        tuple: centers of the cells, intensity measurments
        
    Note:    
        The routine could be potentially refined to make use of background 
        detection in ilastik
    """
    
    classifier = getParameter(classifyCellsParameter, "classifier", classifier);
    classindex = getParameter(classifyCellsParameter, "classindex", classindex);
    save       = getParameter(classifyCellsParameter, "save", save);   
    verbose    = getParameter(classifyCellsParameter, "verbose", verbose);
     
    if verbose:
        writeParameter(out = out, head = 'Ilastik cell detection:', classifier = classifier, classindex = classindex, save = save);        

    timer = Timer(); 

    ilastik.isInitialized();
    
    #remove background
    #img = removeBackground(img, verbose = verbose, out = out, **parameter);
      
    #classify image / assume class 1 are the cells !  
    timer = Timer();  
    
    imgmax = ilastik.classifyPixel(classifier, img);
    #print imgmax.shape
    #max probability gives final class, last axis is class axis
    imgmax = numpy.argmax(imgmax, axis = -1);
    
    if save:
        writeSubStack(save, numpy.asarray(imgmax, dtype = 'float32'), subStack = subStack)    

    # class 0 is used as cells 
    imgmax = imgmax == classindex; # class 1 is used as cells 
    imgshape, nlab = sm.label(imgmax);
    
    if verbose > 1:
        plotTiling(imgmax);
        
    #center of maxima
    centers = findCenterOfMaxima(img, imgmax, imgshape, verbose = verbose, out = out, **parameter);
    
    #intensity of cells
    #cintensity = findIntensity(img, centers, verbose = verbose, out = out, **parameter);

    #intensity of cells in filtered image
    #cintensity2 = findIntensity(img, centers, verbose = verbose, out = out, **parameter);
    
    #if verbose:
    #    out.write(timer.elapsedTime(head = 'Ilastik cell detection') + '\n');    
    
    #return ( centers, numpy.vstack((cintensity, cintensity2)).transpose() );   
    #return ( centers, cintensity ); 
    
    
    #cell size detection
    #detectCellShapeParameter = getParameter(classifyCellsParameter, "detectCellShapeParameter", detectCellShapeParameter);
    #cellShapeThreshold = getParameter(detectCellShapeParameter, "threshold", None);
    
    #if not cellShapeThreshold is None:
        
    # cell shape via watershed
    #imgshape = detectCellShape(img, centers, detectCellShapeParameter = detectCellShapeParameter, verbose = verbose, out = out, **parameter);
    
    #size of cells        
    csize = findCellSize(imgshape, maxLabel = centers.shape[0], out = out, **parameter);
    
    #intensity of cells
    cintensity = findCellIntensity(img, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);

    #intensity of cells in background image
    #cintensity2 = findCellIntensity(img2, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);

    #intensity of cells in dog filtered image
    #if dogSize is None:
    #    cintensity3 = cintensity2;
    #else:
    #    cintensity3 = findCellIntensity(img3, imgshape,  maxLabel = centers.shape[0], verbose = verbose, out = out, **parameter);
    
    if verbose:
        out.write(timer.elapsedTime(head = 'Ilastik Cell Detection') + '\n');
    
    #remove cell;s of size 0
    idz = csize > 0;
                   
    #return ( centers[idz], numpy.vstack((cintensity[idz], cintensity3[idz], cintensity2[idz], csize[idz])).transpose());        
    return ( centers[idz], numpy.vstack((cintensity[idz], csize[idz])).transpose() ); 
Ejemplo n.º 7
0
print cells.shape

plt.plotOverlayPoints(data, cells, z = (10,16))


from ClearMap.ImageProcessing.CellSizeDetection import detectCellShape        
dataShape = detectCellShape(dataDoG, cells, threshold = 15);
plt.plotOverlayLabel(dataDoG / dataDoG.max(), dataShape, z = (10,16))


# find intensities / cell sizes
from ClearMap.ImageProcessing.CellSizeDetection import findCellSize, findCellIntensity

#size of cells        
cellSizes = findCellSize(dataShape, maxLabel = cells.shape[0]);

#intensity of cells
cellIntensities = findCellIntensity(dataBGR, dataShape,  maxLabel = cells.shape[0]);

 
import matplotlib.pyplot as mpl 

mpl.figure()
mpl.plot(cellSizes, cellIntensities, '.')
mpl.xlabel('cell sizes [voxel]')
mpl.ylabel('cell intensities [au]')