Ejemplo n.º 1
0
def info_tutorial():
    nn = NeuralNet()
    x_shape = dat.shape()
    test_gen, _ = dat.testset(batch_size=cfg.BATCH_SIZE,
                              max_samples=cfg.TEST_SET_SIZE)
    nn.test(test_gen, print_it=True)
    nn.net.initialize_spatial_layers(x_shape, cfg.BATCH_SIZE, PATCH_SIZE)
    nn.summary(x_shape, print_it=True)
    nn.print_weights()
    print(nn.output_size(x_shape))

    # Spatial Operations, defined one the net itself. Remember that after enabling a layer, ops are affected
    assert nn.net.num_spatial_layers() != 0
    nn.net.print_spatial_status()
    # nn.train(epochs=1, set_size=5000, lr=0.1, batch_size=cfg.BATCH_SIZE)  # Train to see fully disabled performance
    nn.net.print_ops_summary()
    nn.net.print_ops_summary(
        use_conv=True)  # Count convlution operations instead of MAC
    print(nn.net.num_ops())  # (ops_saved, total_ops)

    # Given x, we generate all spatial layer requirement sizes:
    spat_sizes = nn.net.generate_spatial_sizes(x_shape)
    print(spat_sizes)
    p_spat_sizes = nn.net.generate_padded_spatial_sizes(x_shape, PATCH_SIZE)
    print(p_spat_sizes)

    # Generate a constant 1 value mask over all spatial nets
    print(nn.net.enabled_layers())
    nn.net.fill_masks_to_val(1)
    print(nn.net.enabled_layers())
    print(nn.net.disabled_layers())
    nn.net.print_spatial_status(
    )  # Now all are enabled, seeing the mask was set
    nn.train(epochs=1, set_size=5000, lr=0.1, batch_size=cfg.BATCH_SIZE
             )  # Train to see all layers enabled performance
    nn.net.print_ops_summary()
    nn.net.print_ops_summary(
        use_conv=True)  # Count convlution operations instead of MAC
    nn.net.reset_spatial()  # Disables layers as well
    nn.net.print_ops_summary()
    nn.net.print_ops_summary(use_conv=True)
    # Turns on 3 ids and turns off all others
    chosen_victims = random.sample(range(nn.net.num_spatial_layers()), 4)
    nn.net.strict_mask_update(update_ids=chosen_victims[0:3],
                              masks=[
                                  torch.zeros(p_spat_sizes[chosen_victims[0]]),
                                  torch.zeros(p_spat_sizes[chosen_victims[1]]),
                                  torch.zeros(p_spat_sizes[chosen_victims[2]])
                              ])

    # Turns on one additional id and *does not* turn off all others
    nn.net.lazy_mask_update(
        update_ids=[chosen_victims[3]],
        masks=[torch.zeros(p_spat_sizes[chosen_victims[3]])])
    nn.net.print_spatial_status()  #
    print(nn.net.enabled_layers())
    nn.train(epochs=1, set_size=5000, lr=0.1,
             batch_size=cfg.BATCH_SIZE)  # Run with 4 layers on
    nn.net.print_ops_summary()
    nn.net.print_ops_summary(use_conv=True)
Ejemplo n.º 2
0
def training():
    # dat.data_summary(show_sample=False)
    nn = NeuralNet(resume=True)  # Spatial layers are by default, disabled
    nn.summary(dat.shape())
    nn.train(epochs=50, lr=0.01)
    test_gen, _ = dat.testset(batch_size=cfg.BATCH_SIZE,
                              max_samples=cfg.TEST_SET_SIZE)
    test_loss, test_acc, count = nn.test(test_gen)
    print(
        f'==> Final testing results: test acc: {test_acc:.3f} with {count}, test loss: {test_loss:.3f}'
    )
Ejemplo n.º 3
0
    def __init__(self,
                 patch_size,
                 ones_range,
                 gran_thresh,
                 max_acc_loss,
                 init_acc=None,
                 test_size=cfg.TEST_SET_SIZE,
                 patterns_idx=None):
        self.ps = patch_size
        self.max_acc_loss = max_acc_loss
        self.gran_thresh = gran_thresh

        if patterns_idx is None:
            self.ones_range = ones_range
            self.input_patterns = None
        else:
            patterns_rec = load_from_file(
                f'all_patterns_ps{self.ps}_cluster{patterns_idx}.pkl',
                path=cfg.RESULTS_DIR)
            self.ones_range = (patterns_rec[1], patterns_rec[1] + 1)
            self.input_patterns = patterns_rec[2]

        self.full_net_run_time = None
        self.total_ops = None

        self.nn = NeuralNet()
        self.nn.net.initialize_spatial_layers(dat.shape(), cfg.BATCH_SIZE,
                                              self.ps)
        self.test_gen, _ = dat.testset(batch_size=cfg.BATCH_SIZE,
                                       max_samples=cfg.TEST_SET_SIZE)
        self.test_set_size = cfg.TEST_SET_SIZE
        if INNAS_COMP:
            init_acc = DEBUG_INIT_ACC
        if init_acc is None:
            _, test_acc, correct = self.nn.test(self.test_gen)
            print(f'==> Asserted test-acc of: {test_acc} [{correct}]\n ')
            self.init_acc = test_acc  # TODO - Fix initialize bug
        else:
            self.init_acc = init_acc
        self.record_finder = RecordFinder(cfg.NET.__name__, dat.name(),
                                          patch_size, ones_range, gran_thresh,
                                          max_acc_loss, self.init_acc)
Ejemplo n.º 4
0
def test():
    nn = NeuralNet(resume=True)
    test_gen, _ = dat.testset(batch_size=cfg.BATCH_SIZE,
                              max_samples=cfg.TEST_SET_SIZE)
    test_loss, test_acc, count = nn.test(test_gen, print_it=True)