Ejemplo n.º 1
0
    def test_uniformfloat_transform(self):
        """This checks whether a value sampled through the configuration
        space (it does not happend when the variable is sampled alone) stays
        equal when it is serialized via JSON and the deserialized again."""

        cs = ConfigurationSpace()
        a = cs.add_hyperparameter(UniformFloatHyperparameter('a', -5, 10))
        b = cs.add_hyperparameter(NormalFloatHyperparameter('b', 1, 2,
                                                            log=True))
        for i in range(100):
            config = cs.sample_configuration()
            value = OrderedDict(sorted(config.get_dictionary().items()))
            string = json.dumps(value)
            saved_value = json.loads(string)
            saved_value = OrderedDict(sorted(byteify(saved_value).items()))
            self.assertEqual(repr(value), repr(saved_value))

        # Next, test whether the truncation also works when initializing the
        # Configuration with a dictionary
        for i in range(100):
            rs = np.random.RandomState(1)
            value_a = a.sample(rs)
            value_b = b.sample(rs)
            values_dict = {'a': value_a, 'b': value_b}
            config = Configuration(cs, values=values_dict)
            string = json.dumps(config.get_dictionary())
            saved_value = json.loads(string)
            saved_value = byteify(saved_value)
            self.assertEqual(values_dict, saved_value)
Ejemplo n.º 2
0
 def test_add_hyperparameters_with_equal_names(self):
     cs = ConfigurationSpace()
     hp = UniformIntegerHyperparameter("name", 0, 10)
     cs.add_hyperparameter(hp)
     self.assertRaisesRegex(ValueError,
                            "Hyperparameter 'name' is already in the "
                            "configuration space.",
                            cs.add_hyperparameter, hp)
 def setUp(self):
     cs = ConfigurationSpace()
     hp1 = cs.add_hyperparameter(CategoricalHyperparameter("parent", [0, 1]))
     hp2 = cs.add_hyperparameter(
         UniformIntegerHyperparameter("child", 0, 10))
     hp3 = cs.add_hyperparameter(
         UniformIntegerHyperparameter("friend", 0, 5))
     self.cs = cs
Ejemplo n.º 4
0
 def test_hyperparameters_with_valid_condition(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond)
     self.assertEqual(len(cs._hyperparameters), 2)
Ejemplo n.º 5
0
def _get_configuration_space(
        search_space: Dict[str, BaseDistribution]) -> ConfigurationSpace:
    config_space = ConfigurationSpace()

    for name, distribution in search_space.items():
        config_space.add_hyperparameter(
            _distribution_to_hyperparameter(name, distribution))

    return config_space
Ejemplo n.º 6
0
 def test_hyperparameters_with_valid_condition(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond)
     self.assertEqual(len(cs._hyperparameters), 2)
Ejemplo n.º 7
0
def get_config_space():
    cs = ConfigurationSpace()
    cs.add_hyperparameter(UniformIntegerHyperparameter(name='a',
                                                       lower=0,
                                                       upper=100))
    cs.add_hyperparameter(UniformIntegerHyperparameter(name='b',
                                                       lower=0,
                                                       upper=100))
    return cs
Ejemplo n.º 8
0
    def testRandomImputation(self):
        rs = numpy.random.RandomState(1)

        for i in range(0, 150, 15):
            # First random imputation sanity check
            num_samples = max(1, i * 10)
            num_feat = max(1, i)
            num_censored = int(num_samples * 0.1)
            X = rs.rand(num_samples, num_feat)
            y = numpy.sin(X[:, 0:1])

            cutoff = max(y) * 0.9
            y[y > cutoff] = cutoff

            # We have some cen data
            cen_X = X[:num_censored, :]
            cen_y = y[:num_censored]
            uncen_X = X[num_censored:, :]
            uncen_y = y[num_censored:]

            cen_y /= 2

            cs = ConfigurationSpace()
            for i in range(num_feat):
                cs.add_hyperparameter(
                    UniformFloatHyperparameter(name="a_%d" % i,
                                               lower=0,
                                               upper=1,
                                               default_value=0.5))

            types, bounds = get_types(cs, None)
            self.model = RandomForestWithInstances(
                configspace=cs,
                types=types,
                bounds=bounds,
                instance_features=None,
                seed=1234567980,
            )
            imputor = rfr_imputator.RFRImputator(rng=rs,
                                                 cutoff=cutoff,
                                                 threshold=cutoff * 10,
                                                 change_threshold=0.01,
                                                 max_iter=5,
                                                 model=self.model)

            imp_y = imputor.impute(censored_X=cen_X,
                                   censored_y=cen_y,
                                   uncensored_X=uncen_X,
                                   uncensored_y=uncen_y)

            if imp_y is None:
                continue

            for idx in range(cen_y.shape[0]):
                self.assertGreater(imp_y[idx], cen_y[idx])
            self.assertTrue(numpy.isfinite(imp_y).all())
Ejemplo n.º 9
0
    def test_multi_sample_quantized_uihp(self):
        # This unit test covers a problem with sampling multiple entries at a time from a
        # configuration space with at least one UniformIntegerHyperparameter which is quantized.
        cs = ConfigurationSpace()
        cs.add_hyperparameter(
            UniformIntegerHyperparameter("uihp", lower=1, upper=101, q=2, log=False)
        )

        self.assertIsNotNone(cs.sample_configuration(size=1))
        self.assertEqual(10, len(cs.sample_configuration(size=10)))
Ejemplo n.º 10
0
    def test_check_forbidden_with_sampled_vector_configuration(self):
        cs = ConfigurationSpace()
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        cs.add_hyperparameter(metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)
        configuration = Configuration(cs, vector=np.ones(1, dtype=float))
        self.assertRaisesRegex(ValueError, "violates forbidden clause",
                               cs._check_forbidden, configuration.get_array())
Ejemplo n.º 11
0
 def test_get_conditions(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     self.assertEqual([], cs.get_conditions())
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     self.assertEqual([cond1], cs.get_conditions())
Ejemplo n.º 12
0
    def test_check_forbidden_with_sampled_vector_configuration(self):
        cs = ConfigurationSpace()
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        cs.add_hyperparameter(metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)
        configuration = Configuration(cs, vector=np.ones(1, dtype=float))
        self.assertRaisesRegex(ValueError, "violates forbidden clause",
                               cs._check_forbidden, configuration.get_array())
Ejemplo n.º 13
0
 def test_get_conditions(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     self.assertEqual([], cs.get_conditions())
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     self.assertEqual([cond1], cs.get_conditions())
Ejemplo n.º 14
0
 def test_get_hyperparameters_topological_sort_simple(self):
     for iteration in range(10):
         cs = ConfigurationSpace()
         hp1 = CategoricalHyperparameter("parent", [0, 1])
         cs.add_hyperparameter(hp1)
         hp2 = UniformIntegerHyperparameter("child", 0, 10)
         cs.add_hyperparameter(hp2)
         cond1 = EqualsCondition(hp2, hp1, 0)
         cs.add_condition(cond1)
         # This automatically checks the configuration!
         Configuration(cs, dict(parent=0, child=5))
Ejemplo n.º 15
0
 def _test_random_neigbor(self, hp):
     cs = ConfigurationSpace()
     if not isinstance(hp, list):
         hp = [hp]
     for hp_ in hp:
         cs.add_hyperparameter(hp_)
     cs.seed(1)
     config = cs.sample_configuration()
     for i in range(100):
         new_config = get_random_neighbor(config, i)
         self.assertNotEqual(config, new_config)
Ejemplo n.º 16
0
def get_configspace():
    """ Returns the configuration space for the network to be configured in the example. """
    # BOHB does not support Ordinal -> convert to Cat
    cs_invalid = get_complete_configspace()
    cs = ConfigurationSpace()
    for hp in cs_invalid.get_hyperparameters():
        if isinstance(hp, OrdinalHyperparameter):
            cs.add_hyperparameter(CategoricalHyperparameter(hp.name, choices=hp.sequence))
        else:
            cs.add_hyperparameter(hp)
    return cs
Ejemplo n.º 17
0
 def _test_random_neigbor(self, hp):
     cs = ConfigurationSpace()
     if not isinstance(hp, list):
         hp = [hp]
     for hp_ in hp:
         cs.add_hyperparameter(hp_)
     cs.seed(1)
     config = cs.sample_configuration()
     for i in range(100):
         new_config = get_random_neighbor(config, i)
         self.assertNotEqual(config, new_config)
Ejemplo n.º 18
0
 def test_get_hyperparameters_topological_sort_simple(self):
     for iteration in range(10):
         cs = ConfigurationSpace()
         hp1 = CategoricalHyperparameter("parent", [0, 1])
         cs.add_hyperparameter(hp1)
         hp2 = UniformIntegerHyperparameter("child", 0, 10)
         cs.add_hyperparameter(hp2)
         cond1 = EqualsCondition(hp2, hp1, 0)
         cs.add_condition(cond1)
         # This automatically checks the configuration!
         Configuration(cs, dict(parent=0, child=5))
 def test_illegal_default_configuration(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("loss", ["l1", "l2"], default='l1')
     hp2 = CategoricalHyperparameter("penalty", ["l1", "l2"], default='l1')
     cs.add_hyperparameter(hp1)
     cs.add_hyperparameter(hp2)
     forb1 = ForbiddenEqualsClause(hp1, "l1")
     forb2 = ForbiddenEqualsClause(hp2, "l1")
     forb3 = ForbiddenAndConjunction(forb1, forb2)
     # cs.add_forbidden_clause(forb3)
     self.assertRaisesRegexp(ValueError, "Given vector violates forbidden clause \(Forbidden: loss == \'l1\' && "
         "Forbidden: penalty == \'l1\'\)", cs.add_forbidden_clause, forb3)
Ejemplo n.º 20
0
    def test_get_hyperparameter(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)

        retval = cs.get_hyperparameter("parent")
        self.assertEqual(hp1, retval)
        retval = cs.get_hyperparameter("child")
        self.assertEqual(hp2, retval)
        self.assertRaises(KeyError, cs.get_hyperparameter, "grandfather")
Ejemplo n.º 21
0
 def test_illegal_default_configuration(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("loss", ["l1", "l2"], default_value='l1')
     hp2 = CategoricalHyperparameter("penalty", ["l1", "l2"], default_value='l1')
     cs.add_hyperparameter(hp1)
     cs.add_hyperparameter(hp2)
     forb1 = ForbiddenEqualsClause(hp1, "l1")
     forb2 = ForbiddenEqualsClause(hp2, "l1")
     forb3 = ForbiddenAndConjunction(forb1, forb2)
     # cs.add_forbidden_clause(forb3)
     self.assertRaisesRegexp(ValueError, "Given vector violates forbidden clause \(Forbidden: loss == \'l1\' && "
         "Forbidden: penalty == \'l1\'\)", cs.add_forbidden_clause, forb3)
Ejemplo n.º 22
0
 def test_condition_with_cycles(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     cond2 = EqualsCondition(hp1, hp2, 0)
     self.assertRaisesRegex(ValueError, r"Hyperparameter configuration "
                            r"contains a cycle \[\['child', 'parent'\]\]",
                            cs.add_condition, cond2)
 def test_condition_with_cycles(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 0)
     cs.add_condition(cond1)
     cond2 = EqualsCondition(hp1, hp2, 0)
     self.assertRaisesRegex(ValueError, r"Hyperparameter configuration "
                            r"contains a cycle \[\['child', 'parent'\]\]",
                            cs.add_condition, cond2)
Ejemplo n.º 24
0
    def test_get_hyperparameter(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)

        retval = cs.get_hyperparameter("parent")
        self.assertEqual(hp1, retval)
        retval = cs.get_hyperparameter("child")
        self.assertEqual(hp2, retval)
        self.assertRaises(KeyError, cs.get_hyperparameter, "grandfather")
Ejemplo n.º 25
0
    def test_setitem(self):
        '''
        Checks overriding a sampled configuration
        '''
        pcs = ConfigurationSpace()
        pcs.add_hyperparameter(UniformIntegerHyperparameter('x0', 1, 5, default_value=1))
        x1 = pcs.add_hyperparameter(CategoricalHyperparameter('x1', ['ab', 'bc', 'cd', 'de'], default_value='ab'))

        # Condition
        x2 = pcs.add_hyperparameter(CategoricalHyperparameter('x2', [1, 2]))
        pcs.add_condition(EqualsCondition(x2, x1, 'ab'))

        # Forbidden
        x3 = pcs.add_hyperparameter(CategoricalHyperparameter('x3', [1, 2]))
        pcs.add_forbidden_clause(ForbiddenEqualsClause(x3, 2))

        conf = pcs.get_default_configuration()

        # failed because it's a invalid configuration
        with self.assertRaisesRegex(ValueError, "Illegal value '0' for hyperparameter x0"):
            conf['x0'] = 0

        # failed because the variable didn't exists
        with self.assertRaisesRegex(KeyError, "Hyperparameter 'x_0' does not exist in this configuration space."):
            conf['x_0'] = 1

        # failed because forbidden clause is violated
        with self.assertRaisesRegex(ForbiddenValueError, "Given vector violates forbidden clause Forbidden: x3 == 2"):
            conf['x3'] = 2
        self.assertEqual(conf['x3'], 1)

        # successful operation 1
        x0_old = conf['x0']
        if x0_old == 1:
            conf['x0'] = 2
        else:
            conf['x0'] = 1
        x0_new = conf['x0']
        self.assertNotEqual(x0_old, x0_new)
        pcs._check_configuration_rigorous(conf)
        self.assertEqual(conf['x2'], 1)

        # successful operation 2
        x1_old = conf['x1']
        if x1_old == 'ab':
            conf['x1'] = 'cd'
        else:
            conf['x1'] = 'ab'
        x1_new = conf['x1']
        self.assertNotEqual(x1_old, x1_new)
        pcs._check_configuration_rigorous(conf)
        self.assertRaises(KeyError, conf.__getitem__, 'x2')
Ejemplo n.º 26
0
    def test_get_hyperparameters_topological_sort(self):
        # and now for something more complicated
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        hp6 = Constant("AND", "True")
        # More top-level hyperparameters
        hp7 = CategoricalHyperparameter("input7", [0, 1])
        # Somewhat shuffled
        hyperparameters = [hp1, hp2, hp3, hp4, hp5, hp6, hp7]

        for hp in hyperparameters:
            cs.add_hyperparameter(hp)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp5, hp3, 1)
        cond5 = EqualsCondition(hp4, hp5, 1)
        cond6 = EqualsCondition(hp6, hp4, 1)
        cond7 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond6, cond7)

        cs.add_condition(cond4)
        hps = cs.get_hyperparameters()
        # AND is moved to the front because of alphabetical sorting
        for hp, idx in zip(hyperparameters, [1, 2, 3, 4, 6, 0, 5]):
            self.assertEqual(hps.index(hp), idx)
            self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
            self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)

        cs.add_condition(cond5)
        hps = cs.get_hyperparameters()
        for hp, idx in zip(hyperparameters, [1, 2, 3, 6, 5, 0, 4]):
            self.assertEqual(hps.index(hp), idx)
            self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
            self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)

        cs.add_condition(conj3)
        hps = cs.get_hyperparameters()
        # print(hps, hyperparameters)
        for hp, idx in zip(hyperparameters, [0, 1, 2, 5, 4, 6, 3]):
            # print(hp, idx)
            self.assertEqual(hps.index(hp), idx)
            self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
        self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)
    def test_setitem(self):
        '''
        Checks overriding a sampled configuration
        '''
        pcs = ConfigurationSpace()
        pcs.add_hyperparameter(UniformIntegerHyperparameter('x0', 1, 5, default_value=1))
        x1 = pcs.add_hyperparameter(CategoricalHyperparameter('x1', ['ab', 'bc', 'cd', 'de'], default_value='ab'))

        # Condition
        x2 = pcs.add_hyperparameter(CategoricalHyperparameter('x2', [1, 2]))
        pcs.add_condition(EqualsCondition(x2, x1, 'ab'))

        # Forbidden
        x3 = pcs.add_hyperparameter(CategoricalHyperparameter('x3', [1, 2]))
        pcs.add_forbidden_clause(ForbiddenEqualsClause(x3, 2))

        conf = pcs.get_default_configuration()

        # failed because it's a invalid configuration
        with self.assertRaisesRegex(ValueError, "Illegal value '0' for hyperparameter x0"):
            conf['x0'] = 0

        # failed because the variable didn't exists
        with self.assertRaisesRegex(KeyError, "Hyperparameter 'x_0' does not exist in this configuration space."):
            conf['x_0'] = 1

        # failed because forbidden clause is violated
        with self.assertRaisesRegex(ForbiddenValueError, "Given vector violates forbidden clause Forbidden: x3 == 2"):
            conf['x3'] = 2
        self.assertEqual(conf['x3'], 1)

        # successful operation 1
        x0_old = conf['x0']
        if x0_old == 1:
            conf['x0'] = 2
        else:
            conf['x0'] = 1
        x0_new = conf['x0']
        self.assertNotEqual(x0_old, x0_new)
        pcs._check_configuration_rigorous(conf)
        self.assertEqual(conf['x2'], 1)

        # successful operation 2
        x1_old = conf['x1']
        if x1_old == 'ab':
            conf['x1'] = 'cd'
        else:
            conf['x1'] = 'ab'
        x1_new = conf['x1']
        self.assertNotEqual(x1_old, x1_new)
        pcs._check_configuration_rigorous(conf)
        self.assertRaises(KeyError, conf.__getitem__, 'x2')
Ejemplo n.º 28
0
    def test_get_hyperparameters_topological_sort(self):
            # and now for something more complicated
            cs = ConfigurationSpace()
            hp1 = CategoricalHyperparameter("input1", [0, 1])
            hp2 = CategoricalHyperparameter("input2", [0, 1])
            hp3 = CategoricalHyperparameter("input3", [0, 1])
            hp4 = CategoricalHyperparameter("input4", [0, 1])
            hp5 = CategoricalHyperparameter("input5", [0, 1])
            hp6 = Constant("AND", "True")
            # More top-level hyperparameters
            hp7 = CategoricalHyperparameter("input7", [0, 1])
            # Somewhat shuffled
            hyperparameters = [hp1, hp2, hp3, hp4, hp5, hp6, hp7]

            for hp in hyperparameters:
                cs.add_hyperparameter(hp)

            cond1 = EqualsCondition(hp6, hp1, 1)
            cond2 = NotEqualsCondition(hp6, hp2, 1)
            cond3 = InCondition(hp6, hp3, [1])
            cond4 = EqualsCondition(hp5, hp3, 1)
            cond5 = EqualsCondition(hp4, hp5, 1)
            cond6 = EqualsCondition(hp6, hp4, 1)
            cond7 = EqualsCondition(hp6, hp5, 1)

            conj1 = AndConjunction(cond1, cond2)
            conj2 = OrConjunction(conj1, cond3)
            conj3 = AndConjunction(conj2, cond6, cond7)

            cs.add_condition(cond4)
            hps = cs.get_hyperparameters()
            # AND is moved to the front because of alphabetical sorting
            for hp, idx in zip(hyperparameters, [1, 2, 3, 4, 6, 0, 5]):
                self.assertEqual(hps.index(hp), idx)
                self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
                self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)

            cs.add_condition(cond5)
            hps = cs.get_hyperparameters()
            for hp, idx in zip(hyperparameters, [1, 2, 3, 6, 5, 0, 4]):
                self.assertEqual(hps.index(hp), idx)
                self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
                self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)

            cs.add_condition(conj3)
            hps = cs.get_hyperparameters()
            # print(hps, hyperparameters)
            for hp, idx in zip(hyperparameters, [0, 1, 2, 5, 4, 6, 3]):
                # print(hp, idx)
                self.assertEqual(hps.index(hp), idx)
                self.assertEqual(cs._hyperparameter_idx[hp.name], idx)
            self.assertEqual(cs._idx_to_hyperparameter[idx], hp.name)
Ejemplo n.º 29
0
    def test_merge_foreign_data(self):
        ''' test smac.utils.merge_foreign_data '''

        scenario = Scenario(self.test_scenario_dict)
        scenario_2 = Scenario(self.test_scenario_dict)
        scenario_2.feature_dict = {"inst_new": [4]}

        # init cs
        cs = ConfigurationSpace()
        cs.add_hyperparameter(UniformIntegerHyperparameter(name='a',
                                                           lower=0,
                                                           upper=100))
        cs.add_hyperparameter(UniformIntegerHyperparameter(name='b',
                                                           lower=0,
                                                           upper=100))
        # build runhistory
        rh_merge = RunHistory(aggregate_func=average_cost)
        config = Configuration(cs, values={'a': 1, 'b': 2})

        rh_merge.add(config=config, instance_id="inst_new", cost=10, time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        # "d" is an instance in <scenario>
        rh_merge.add(config=config, instance_id="d", cost=5, time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        # build empty rh
        rh_base = RunHistory(aggregate_func=average_cost)

        merge_foreign_data(scenario=scenario, runhistory=rh_base,
                           in_scenario_list=[scenario_2], in_runhistory_list=[rh_merge])

        # both runs should be in the runhistory
        # but we should not use the data to update the cost of config
        self.assertTrue(len(rh_base.data) == 2)
        self.assertTrue(np.isnan(rh_base.get_cost(config)))

        # we should not get direct access to external run data
        runs = rh_base.get_runs_for_config(config)
        self.assertTrue(len(runs) == 0)

        rh_merge.add(config=config, instance_id="inst_new_2", cost=10, time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        self.assertRaises(ValueError, merge_foreign_data, **{
                          "scenario": scenario, "runhistory": rh_base, "in_scenario_list": [scenario_2], "in_runhistory_list": [rh_merge]})
Ejemplo n.º 30
0
 def test_get_hyperparamforbidden_clauseseters(self):
     cs = ConfigurationSpace()
     self.assertEqual(0, len(cs.get_hyperparameters()))
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     self.assertEqual([hp1], cs.get_hyperparameters())
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 1)
     cs.add_condition(cond1)
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
     # TODO: I need more tests for the topological sort!
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
Ejemplo n.º 31
0
 def test_get_hyperparamforbidden_clauseseters(self):
     cs = ConfigurationSpace()
     self.assertEqual(0, len(cs.get_hyperparameters()))
     hp1 = CategoricalHyperparameter("parent", [0, 1])
     cs.add_hyperparameter(hp1)
     self.assertEqual([hp1], cs.get_hyperparameters())
     hp2 = UniformIntegerHyperparameter("child", 0, 10)
     cs.add_hyperparameter(hp2)
     cond1 = EqualsCondition(hp2, hp1, 1)
     cs.add_condition(cond1)
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
     # TODO: I need more tests for the topological sort!
     self.assertEqual([hp1, hp2], cs.get_hyperparameters())
def sacred_space_to_configspace(space):
    """
    Convert a Labwatch searchspace to a ConfigSpace.

    Parameters
    ----------
    space: labwatch.searchspace.SearchSpace
        A labwatch searchspace to be converted.

    Returns
    -------
    ConfigSpace.ConfigurationSpace:
        A ConfigurationSpace equivalent to the given SeachSpace.
    """
    # first convert all non conditionals
    non_conditions = {}
    conditions = []
    for name in space.non_conditions:
        param = space.parameters[name]
        converted_param = convert_simple_param(name, param)
        non_conditions[name] = converted_param
    for name in space.conditions:
        param = space.parameters[name]
        converted_result = convert_simple_param(name, param["result"])
        # next build the condition as required by the ConfigSpace
        condition = param["condition"]
        condition_name = space.uids_to_names[condition["uid"]]
        if condition_name not in non_conditions:
            raise ValueError("Unknown parameter in Condition")
        converted_condition = non_conditions[condition_name]
        converted_choices = []
        for choice in condition["choices"]:
            if isinstance(choice, dict):
                if choice["_class"] != "Constant":
                    raise ValueError("Invalid choice encountered in Condition")
                converted_choices.append(choice["value"])
            else:
                converted_choices.append(choice)
        cond = InCondition(converted_result,
                           converted_condition,
                           values=converted_choices)
        non_conditions[name] = converted_result
        conditions.append(cond)
    # finally build the ConfigSpace
    cs = ConfigurationSpace(seed=np.random.seed())
    for _name, param in non_conditions.items():
        cs.add_hyperparameter(param)
    for cond in conditions:
        cs.add_condition(cond)
    return cs
Ejemplo n.º 33
0
 def test_add_forbidden_clause(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("input1", [0, 1])
     cs.add_hyperparameter(hp1)
     forb = ForbiddenEqualsClause(hp1, 1)
     # TODO add checking whether a forbidden clause makes sense at all
     cs.add_forbidden_clause(forb)
     # TODO add something to properly retrieve the forbidden clauses
     self.assertEqual(str(cs), "Configuration space object:\n  "
                               "Hyperparameters:\n    input1, "
                               "Type: Categorical, Choices: {0, 1}, "
                               "Default: 0\n"
                               "  Forbidden Clauses:\n"
                               "    Forbidden: input1 == 1\n")
 def test_add_forbidden_clause(self):
     cs = ConfigurationSpace()
     hp1 = CategoricalHyperparameter("input1", [0, 1])
     cs.add_hyperparameter(hp1)
     forb = ForbiddenEqualsClause(hp1, 1)
     # TODO add checking whether a forbidden clause makes sense at all
     cs.add_forbidden_clause(forb)
     # TODO add something to properly retrieve the forbidden clauses
     self.assertEqual(str(cs), "Configuration space object:\n  "
                               "Hyperparameters:\n    input1, "
                               "Type: Categorical, Choices: {0, 1}, "
                               "Default: 0\n"
                               "  Forbidden Clauses:\n"
                               "    Forbidden: input1 == 1\n")
Ejemplo n.º 35
0
def get_cash_cs(include_algorithms=None, task_type=CLASSIFICATION):
    _candidates = get_combined_candidtates(_classifiers, _addons)
    if include_algorithms is not None:
        _candidates = set(include_algorithms).intersection(set(_candidates.keys()))
        if len(_candidates) == 0:
            raise ValueError("No algorithms included! Please check the spelling of the included algorithms!")
    cs = ConfigurationSpace()
    algo = CategoricalHyperparameter('algorithm', list(_candidates))
    cs.add_hyperparameter(algo)
    for estimator_id in _candidates:
        estimator_cs = get_hpo_cs(estimator_id)
        parent_hyperparameter = {'parent': algo,
                                 'value': estimator_id}
        cs.add_configuration_space(estimator_id, estimator_cs, parent_hyperparameter=parent_hyperparameter)
    return cs
Ejemplo n.º 36
0
 def create_cs_from_pandaframe(self, data):
     # TODO use from pyimp after https://github.com/automl/ParameterImportance/issues/72 is implemented
     warnings.warn(
         "No parameter configuration space (pcs) provided! "
         "Interpreting all parameters as floats. This might lead "
         "to suboptimal analysis.", RuntimeWarning)
     self.logger.debug("Interpreting as parameters: %s", data.columns)
     minima = data.min()  # to define ranges of hyperparameter
     maxima = data.max()
     cs = ConfigurationSpace(seed=42)
     for p in data.columns:
         cs.add_hyperparameter(
             UniformFloatHyperparameter(p,
                                        lower=minima[p] - 1,
                                        upper=maxima[p] + 1))
Ejemplo n.º 37
0
    def test_get_one_exchange_neighbourhood(self):
        # test fixed_dims
        cs = ConfigurationSpace()
        cs.add_hyperparameter(
            CategoricalHyperparameter('0', [0, 1], default_value=0))
        cs.add_hyperparameter(
            CategoricalHyperparameter('1', [0, 1], default_value=0))
        cs.add_hyperparameter(
            CategoricalHyperparameter('2', [0, 1], default_value=0))
        cs.add_hyperparameter(
            CategoricalHyperparameter('3', [0, 1], default_value=0))
        cs.add_hyperparameter(
            CategoricalHyperparameter('4', [0, 1, 2, 3, 4], default_value=0))

        fixed_dims = {'0': 1, '1': 0, '2': 0, '3': 0}

        conf = cs.sample_configuration(fixed_dims=fixed_dims)
        neighborhood_iter = get_one_exchange_neighbourhood(
            conf, seed=0, fixed_dims=fixed_dims)

        tmp = next(neighborhood_iter)
        self.assertEqual(tmp['0'], fixed_dims['0'])
        self.assertEqual(tmp['1'], fixed_dims['1'])
        self.assertEqual(tmp['2'], fixed_dims['2'])
        self.assertEqual(tmp['3'], fixed_dims['3'])

        tmp = next(neighborhood_iter)
        self.assertEqual(tmp['0'], fixed_dims['0'])
        self.assertEqual(tmp['1'], fixed_dims['1'])
        self.assertEqual(tmp['2'], fixed_dims['2'])
        self.assertEqual(tmp['3'], fixed_dims['3'])

        tmp = next(neighborhood_iter)
        self.assertEqual(tmp['0'], fixed_dims['0'])
        self.assertEqual(tmp['1'], fixed_dims['1'])
        self.assertEqual(tmp['2'], fixed_dims['2'])
        self.assertEqual(tmp['3'], fixed_dims['3'])

        tmp = next(neighborhood_iter)
        self.assertEqual(tmp['0'], fixed_dims['0'])
        self.assertEqual(tmp['1'], fixed_dims['1'])
        self.assertEqual(tmp['2'], fixed_dims['2'])
        self.assertEqual(tmp['3'], fixed_dims['3'])

        # StopIteration
        with self.assertRaises(StopIteration):
            tmp = next(neighborhood_iter)
    def test_add_configuration_space(self):
        cs = ConfigurationSpace()
        hp1 = cs.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        cs.add_forbidden_clause(ForbiddenEqualsClause(hp1, 1))
        hp2 = cs.add_hyperparameter(UniformIntegerHyperparameter("child", 0, 10))
        cs.add_condition(EqualsCondition(hp2, hp1, 0))
        cs2 = ConfigurationSpace()
        cs2.add_configuration_space('prefix', cs, delimiter='__')
        self.assertEqual(str(cs2), '''Configuration space object:
  Hyperparameters:
    prefix__child, Type: UniformInteger, Range: [0, 10], Default: 5
    prefix__input1, Type: Categorical, Choices: {0, 1}, Default: 0
  Conditions:
    prefix__child | prefix__input1 == 0
  Forbidden Clauses:
    Forbidden: prefix__input1 == 1
''')
Ejemplo n.º 39
0
    def test_add_configuration_space(self):
        cs = ConfigurationSpace()
        hp1 = cs.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        cs.add_forbidden_clause(ForbiddenEqualsClause(hp1, 1))
        hp2 = cs.add_hyperparameter(UniformIntegerHyperparameter("child", 0, 10))
        cs.add_condition(EqualsCondition(hp2, hp1, 0))
        cs2 = ConfigurationSpace()
        cs2.add_configuration_space('prefix', cs, delimiter='__')
        self.assertEqual(str(cs2), '''Configuration space object:
  Hyperparameters:
    prefix__child, Type: UniformInteger, Range: [0, 10], Default: 5
    prefix__input1, Type: Categorical, Choices: {0, 1}, Default: 0
  Conditions:
    prefix__child | prefix__input1 == 0
  Forbidden Clauses:
    Forbidden: prefix__input1 == 1
''')
Ejemplo n.º 40
0
 def test_estimate_size(self):
     cs = ConfigurationSpace()
     self.assertEqual(cs.estimate_size(), 0)
     cs.add_hyperparameter(Constant('constant', 0))
     self.assertEqual(cs.estimate_size(), 1)
     cs.add_hyperparameter(UniformIntegerHyperparameter('integer', 0, 5))
     self.assertEqual(cs.estimate_size(), 6)
     cs.add_hyperparameter(CategoricalHyperparameter('cat', [0, 1, 2]))
     self.assertEqual(cs.estimate_size(), 18)
     cs.add_hyperparameter(UniformFloatHyperparameter('float', 0, 1))
     self.assertTrue(np.isinf(cs.estimate_size()))
Ejemplo n.º 41
0
class TestLHDesign(unittest.TestCase):
    def setUp(self):
        def get_uniform_param(name: str):
            return UniformFloatHyperparameter(name, 0, 1)

        def get_constant_param(name: str):
            return Constant(name, 0.)

        def get_categorical_param(name: str):
            return CategoricalHyperparameter(name, choices=["a", "b", "c"])

        def get_ordinal_param(name: str):
            return OrdinalHyperparameter(name, [8, 6, 4, 2])

        get_params = [
            get_uniform_param,
            get_constant_param,
            get_categorical_param,
            get_ordinal_param
        ]

        self.cs = ConfigurationSpace()
        for j, get_param in enumerate(get_params):
            param_name = f"x{j}"
            self.cs.add_hyperparameter(get_param(param_name))

        for i in range(5):
            self.cs.add_hyperparameter(UniformFloatHyperparameter('x%d' % (i + len(get_params)), 0, 1))

    def test_latin_hypercube_design(self):
        kwargs = dict(
            rng=np.random.RandomState(1),
            traj_logger=unittest.mock.Mock(),
            ta_run_limit=1000,
            configs=None,
            n_configs_x_params=None,
            max_config_fracs=0.25,
            init_budget=1,
        )
        LHDesign(
            cs=self.cs,
            **kwargs
        ).select_configurations()
Ejemplo n.º 42
0
    def test_condition_without_added_hyperparameters(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cond = EqualsCondition(hp2, hp1, 0)
        self.assertRaisesRegex(ValueError, "Child hyperparameter 'child' not "
                               "in configuration space.", cs.add_condition,
                               cond)
        cs.add_hyperparameter(hp1)
        self.assertRaisesRegex(ValueError, "Child hyperparameter 'child' not "
                               "in configuration space.", cs.add_condition,
                               cond)

        # Test also the parent hyperparameter
        cs2 = ConfigurationSpace()
        cs2.add_hyperparameter(hp2)
        self.assertRaisesRegex(ValueError, "Parent hyperparameter 'parent' "
                               "not in configuration space.",
                               cs2.add_condition, cond)
Ejemplo n.º 43
0
    def evaluate(_config):
        _config = _config.get_dictionary()
        # print(_config)
        arm = None
        cs = ConfigurationSpace()
        for key in _config:
            key_str = key.split(":")
            if key_str[0] == 'classifier':
                if key_str[1] == '__choice__':
                    arm = _config[key]
                    cs.add_hyperparameter(
                        UnParametrizedHyperparameter("estimator",
                                                     _config[key]))
                else:
                    cs.add_hyperparameter(
                        UnParametrizedHyperparameter(key_str[2], _config[key]))

        if arm in first_bandit.arms:
            transformed_node = apply_metalearning_fe(
                first_bandit.sub_bandits[arm].optimizer['fe'], _config)
            default_config = cs.sample_configuration(1)
            hpo_evaluator = ClassificationEvaluator(
                None,
                data_node=transformed_node,
                name='hpo',
                resampling_strategy=first_bandit.eval_type,
                seed=first_bandit.seed)

            start_time = time.time()
            score1 = -hpo_evaluator(default_config)
            time_cost1 = time.time() - start_time

            # Evaluate the default config
            start_time = time.time()
            score2 = -hpo_evaluator(
                first_bandit.sub_bandits[arm].default_config)
            time_cost2 = time.time() - start_time
            transformed_node.score2 = max(score1, score2)

            return (arm, score1, default_config, transformed_node,
                    time_cost1), (arm, score2,
                                  first_bandit.sub_bandits[arm].default_config,
                                  transformed_node, time_cost2)
Ejemplo n.º 44
0
    def test_add_second_condition_wo_conjunction(self):
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = Constant("And", "True")

        cond1 = EqualsCondition(hp3, hp1, 1)
        cond2 = EqualsCondition(hp3, hp2, 1)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(hp1)
        cs.add_hyperparameter(hp2)
        cs.add_hyperparameter(hp3)

        cs.add_condition(cond1)
        self.assertRaisesRegex(
            ValueError, r"Adding a second condition \(different\) for a "
            r"hyperparameter is ambigouos and "
            r"therefore forbidden. Add a conjunction "
            r"instead!", cs.add_condition, cond2)
Ejemplo n.º 45
0
 def get_configspace(self, optimizer='smac'):
     if optimizer == 'smac':
         cs = ConfigurationSpace()
         for i in range(self.dim):
             xi = UniformFloatHyperparameter("x%d" % i, self.lb, self.ub)
             cs.add_hyperparameter(xi)
         return cs
     elif optimizer == 'tpe':
         from hyperopt import hp
         space = {'x%d' % i: hp.uniform('hp_x%d' % i, self.lb, self.ub) for i in range(self.dim)}
         return space
     elif optimizer == 'gpflowopt':
         import gpflowopt
         domain = np.sum([
             gpflowopt.domain.ContinuousParameter('x%d' % i, self.lb, self.ub) for i in range(self.dim)
         ])
         return domain
     else:
         raise ValueError('Unknown optimizer %s when getting configspace' % optimizer)
Ejemplo n.º 46
0
    def test_condition_without_added_hyperparameters(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cond = EqualsCondition(hp2, hp1, 0)
        self.assertRaisesRegex(
            ValueError, "Child hyperparameter 'child' not "
            "in configuration space.", cs.add_condition, cond)
        cs.add_hyperparameter(hp1)
        self.assertRaisesRegex(
            ValueError, "Child hyperparameter 'child' not "
            "in configuration space.", cs.add_condition, cond)

        # Test also the parent hyperparameter
        cs2 = ConfigurationSpace()
        cs2.add_hyperparameter(hp2)
        self.assertRaisesRegex(
            ValueError, "Parent hyperparameter 'parent' "
            "not in configuration space.", cs2.add_condition, cond)
Ejemplo n.º 47
0
    def test_choose_next(self):
        configspace = ConfigurationSpace()
        configspace.add_hyperparameter(UniformFloatHyperparameter('a', 0, 1))
        configspace.add_hyperparameter(UniformFloatHyperparameter('b', 0, 1))

        dataset_name = 'foo'
        func_eval_time_limit = 15
        total_walltime_limit = 15
        memory_limit = 3072

        auto = AutoMLSMBO(config_space=None,
                          dataset_name=dataset_name,
                          backend=None,
                          func_eval_time_limit=func_eval_time_limit,
                          total_walltime_limit=total_walltime_limit,
                          memory_limit=memory_limit,
                          watcher=None,
                          metric=accuracy)
        auto.config_space = configspace
        scenario = Scenario({
            'cs': configspace,
            'cutoff-time': func_eval_time_limit,
            'wallclock-limit': total_walltime_limit,
            'memory-limit': memory_limit,
            'run-obj': 'quality'
        })
        smac = SMAC(scenario)

        self.assertRaisesRegex(
            ValueError, 'Cannot use SMBO algorithm on '
            'empty runhistory', auto.choose_next, smac)

        config = Configuration(configspace, values={'a': 0.1, 'b': 0.2})
        # TODO make sure the incumbent is always set?
        smac.solver.incumbent = config
        runhistory = smac.solver.runhistory
        runhistory.add(config=config,
                       cost=0.5,
                       time=0.5,
                       status=StatusType.SUCCESS)

        auto.choose_next(smac)
Ejemplo n.º 48
0
    def test_add_second_condition_wo_conjunction(self):
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = Constant("And", "True")

        cond1 = EqualsCondition(hp3, hp1, 1)
        cond2 = EqualsCondition(hp3, hp2, 1)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(hp1)
        cs.add_hyperparameter(hp2)
        cs.add_hyperparameter(hp3)

        cs.add_condition(cond1)
        self.assertRaisesRegex(ValueError,
                               r"Adding a second condition \(different\) for a "
                               r"hyperparameter is ambigouos and "
                               r"therefore forbidden. Add a conjunction "
                               r"instead!",
                               cs.add_condition, cond2)
Ejemplo n.º 49
0
    def test_add_conjunction(self):
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        hp4 = Constant("And", "True")

        cond1 = EqualsCondition(hp4, hp1, 1)
        cond2 = EqualsCondition(hp4, hp2, 1)
        cond3 = EqualsCondition(hp4, hp3, 1)

        andconj1 = AndConjunction(cond1, cond2, cond3)

        cs = ConfigurationSpace()
        cs.add_hyperparameter(hp1)
        cs.add_hyperparameter(hp2)
        cs.add_hyperparameter(hp3)
        cs.add_hyperparameter(hp4)

        cs.add_condition(andconj1)
        self.assertNotIn(hp4, cs.get_all_unconditional_hyperparameters())
Ejemplo n.º 50
0
    def test_repr(self):
        cs1 = ConfigurationSpace()
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n",
                         retval)

        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs1.add_hyperparameter(hp1)
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n"
                         "    %s\n" % str(hp1), retval)

        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs1.add_hyperparameter(hp2)
        cs1.add_condition(cond1)
        retval = cs1.__str__()
        self.assertEqual("Configuration space object:\n  Hyperparameters:\n"
                         "    %s\n    %s\n  Conditions:\n    %s\n" %
                         (str(hp2), str(hp1), str(cond1)), retval)
Ejemplo n.º 51
0
    def test_add_configuration_space_conjunctions(self):
        cs1 = ConfigurationSpace()
        cs2 = ConfigurationSpace()

        hp1 = cs1.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        hp2 = cs1.add_hyperparameter(CategoricalHyperparameter("input2", [0, 1]))
        hp3 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child1", 0, 10))
        hp4 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child2", 0, 10))

        cond1 = EqualsCondition(hp2, hp3, 0)
        cond2 = EqualsCondition(hp1, hp3, 5)
        cond3 = EqualsCondition(hp1, hp4, 1)
        andCond = AndConjunction(cond2, cond3)

        cs1.add_conditions([cond1, andCond])
        cs2.add_configuration_space(prefix='test', configuration_space=cs1)

        self.assertEqual(str(cs2).count('test:'), 10)
        # Check that they're equal except for the "test:" prefix
        self.assertEqual(str(cs1), str(cs2).replace('test:', ''))
    def test_check_configuration2(self):
        # Test that hyperparameters which are not active must not be set and
        # that evaluating forbidden clauses does not choke on missing
        # hyperparameters
        cs = ConfigurationSpace()
        classifier = CategoricalHyperparameter("classifier",
            ["k_nearest_neighbors", "extra_trees"])
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        p = CategoricalHyperparameter("k_nearest_neighbors:p", [1, 2])
        metric_depends_on_classifier = EqualsCondition(metric, classifier,
                                                       "k_nearest_neighbors")
        p_depends_on_metric = EqualsCondition(p, metric, "minkowski")
        cs.add_hyperparameter(metric)
        cs.add_hyperparameter(p)
        cs.add_hyperparameter(classifier)
        cs.add_condition(metric_depends_on_classifier)
        cs.add_condition(p_depends_on_metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)

        configuration = Configuration(cs, dict(classifier="extra_trees"))

        # check backward compatibility with checking configurations instead of vectors
        cs.check_configuration(configuration)
Ejemplo n.º 53
0
    def _test_get_one_exchange_neighbourhood(self, hp):
        cs = ConfigurationSpace()
        num_neighbors = 0
        if not isinstance(hp, list):
            hp = [hp]
        for hp_ in hp:
            cs.add_hyperparameter(hp_)
            if np.isinf(hp_.get_num_neighbors()):
                num_neighbors += 4
            else:
                num_neighbors += hp_.get_num_neighbors()

        cs.seed(1)
        config = cs.get_default_configuration()
        all_neighbors = []
        for i in range(100):
            neighborhood = get_one_exchange_neighbourhood(config, i)
            for new_config in neighborhood:
                self.assertNotEqual(config, new_config)
                all_neighbors.append(new_config)

        return all_neighbors
Ejemplo n.º 54
0
    def test_get_parent_and_children_of(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)

        self.assertEqual([hp1], cs.get_parents_of(hp2.name))
        self.assertEqual([hp1], cs.get_parents_of(hp2))
        self.assertEqual([hp2], cs.get_children_of(hp1.name))
        self.assertEqual([hp2], cs.get_children_of(hp1))

        self.assertRaisesRegex(KeyError,
                               "Hyperparameter 'Foo' does not exist in this "
                               "configuration space.", cs.get_parents_of,
                               "Foo")
        self.assertRaisesRegex(KeyError,
                               "Hyperparameter 'Foo' does not exist in this "
                               "configuration space.", cs.get_children_of,
                               "Foo")
Ejemplo n.º 55
0
    def test_eq(self):
        # Compare empty configuration spaces
        cs1 = ConfigurationSpace()
        cs2 = ConfigurationSpace()
        self.assertEqual(cs1, cs2)

        # Compare to something which isn't a configuration space
        self.assertTrue(not (cs1 == "ConfigurationSpace"))

        # Compare to equal configuration spaces
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        hp3 = UniformIntegerHyperparameter("friend", 0, 5)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs1.add_hyperparameter(hp1)
        cs1.add_hyperparameter(hp2)
        cs1.add_condition(cond1)
        cs2.add_hyperparameter(hp1)
        cs2.add_hyperparameter(hp2)
        cs2.add_condition(cond1)
        self.assertEqual(cs1, cs2)
        cs1.add_hyperparameter(hp3)
        self.assertFalse(cs1 == cs2)
Ejemplo n.º 56
0
 def test_setting_illegal_value(self):
     cs = ConfigurationSpace()
     cs.add_hyperparameter(UniformFloatHyperparameter('x', 0, 1))
     configuration = {'x': 2}
     self.assertRaises(ValueError, Configuration, cs, configuration)
Ejemplo n.º 57
0
    def test_sample_configuration(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace(seed=1)
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp5, hp3, 1)
        cond5 = EqualsCondition(hp4, hp5, 1)
        cond6 = EqualsCondition(hp6, hp4, 1)
        cond7 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond6, cond7)
        cs.add_condition(cond4)
        cs.add_condition(cond5)
        cs.add_condition(conj3)

        samples = []
        for i in range(5):
            cs.seed(1)
            samples.append([])
            for j in range(100):
                sample = cs.sample_configuration()
                samples[-1].append(sample)

            if i > 0:
                for j in range(100):
                    self.assertEqual(samples[-1][j], samples[-2][j])
Ejemplo n.º 58
0
 def test_add_hyperparameter(self):
     cs = ConfigurationSpace()
     hp = UniformIntegerHyperparameter("name", 0, 10)
     cs.add_hyperparameter(hp)
Ejemplo n.º 59
0
    def test_check_configuration(self):
        # TODO this is only a smoke test
        # TODO actually, this rather tests the evaluate methods in the
        # conditions module!
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp6, hp4, 1)
        cond5 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond4, cond5)
        cs.add_condition(conj3)

        expected_outcomes = [False, False, False, False, False,
                             False, False, True, False, False,
                             False, False, False, False, False,
                             True, False, False, False, True,
                             False, False, False, True, False,
                             False, False, False, False, False,
                             False, True]

        for idx, values in enumerate(product([0, 1], repeat=5)):
            # The hyperparameters aren't sorted, but the test assumes them to
            #  be sorted.
            hyperparameters = sorted(cs.get_hyperparameters(),
                                     key=lambda t: t.name)
            instantiations = {hyperparameters[jdx+1].name: values[jdx]
                              for jdx in range(len(values))}

            evaluation = conj3.evaluate(instantiations)
            self.assertEqual(expected_outcomes[idx], evaluation)

            if not evaluation:
                self.assertRaisesRegex(ValueError,
                                       r"Inactive hyperparameter 'AND' must "
                                       r"not be specified, but has the vector value: "
                                       r"'0.0'.",
                                       Configuration, cs, values={
                                            "input1": values[0],
                                            "input2": values[1],
                                            "input3": values[2],
                                            "input4": values[3],
                                            "input5": values[4],
                                            "AND": "True"})
            else:
                Configuration(cs, values={"input1": values[0],
                                          "input2": values[1],
                                          "input3": values[2],
                                          "input4": values[3],
                                          "input5": values[4],
                                          "AND": "True"})
Ejemplo n.º 60
0
    def test_add_conditions(self):
        cs1 = ConfigurationSpace()
        cs2 = ConfigurationSpace()

        hp1 = cs1.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        cs2.add_hyperparameter(hp1)
        hp2 = cs1.add_hyperparameter(CategoricalHyperparameter("input2", [0, 1]))
        cs2.add_hyperparameter(hp2)
        hp3 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child1", 0, 10))
        cs2.add_hyperparameter(hp3)
        hp4 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child2", 0, 10))
        cs2.add_hyperparameter(hp4)

        cond1 = EqualsCondition(hp2, hp3, 0)
        cond2 = EqualsCondition(hp1, hp3, 5)
        cond3 = EqualsCondition(hp1, hp4, 1)
        andCond = AndConjunction(cond2, cond3)

        cs1.add_conditions([cond1, andCond])
        cs2.add_condition(cond1)
        cs2.add_condition(andCond)

        self.assertEqual(str(cs1), str(cs2))