def train(): classfier_name = request.forms.get('classfier_name') classfier_type = request.forms.get('classfier_type') classfier_params = request.forms.get('classfier_params') cross_validation_type = request.forms.get('cross_validation_type') learning_curve_params = request.forms.get('learning_curve_params') train_size = request.forms.get('train_size') clf = classifier.configure_classifier(classfier_type,classfier_params) cv = classifier.configure_cross_validation(cross_validation_type,classfier_params) features_train, labels_train = wtf.getArrays() clf, train_sizes, train_scores, test_scores = classifier.train(clf, train_sizes = np.linspace(.1, 1.0,train_size), cv = cv, params = " ", features = features_train, labels = labels_train ) data = classfier_to_send(classfier_name, clf, train_sizes, train_scores, test_scores) post.send("http://naos-software.com/dataprocessing/rest-api","/classifiers","",data) return data
def preds_to_send(questionId, documentId, value, range): data ={ "userId" : "2", "questionId" : questionId, "documentId" : documentId, "value" : value, "range" : range, } return data def test_data_to_send(classifierId, vectoriziedDocumentCollectionId, parameter, precision, accuracy, recall): data ={ "classifierId" : classifierId, "vectoriziedDocumentCollectionId" : vectoriziedDocumentCollectionId, "parameter" : parameter, "precision" : precision, "accuracy" : accuracy, "recall" : recall } return data data1 = test_data_to_send(1, 1, 1) post.send("http://naos-software.com/dataprocessing/rest-api/resultTestClassifiers",data1) data2 = preds_to_send(2, 2, -5, 5) post.send("http://naos-software.com/dataprocessing/rest-api/annotations",data2) data3 = classfier_to_send(2, 2, 1) put.send("http://naos-software.com/dataprocessing/rest-api/classifiers/",id,data3)