Ejemplo n.º 1
0
def musica(cat, carac_1, carac_2, min_1, max_1, min_2, max_2):
    m = cat["features"]
    m_reps = mp.newMap(4000, maptype='PROBING', loadfactor=0.5)
    m_tracks = om.newMap(omaptype='RBT', comparefunction=compareValue)

    a = mp.get(m, carac_1)
    m_1 = me.getValue(a)
    l_1 = om.values(m_1, min_1, max_1)
    for lists in lt.iterator(l_1):
        for e in lt.iterator(lists):
            mp.put(m_reps, e["track_id"], "")

    b = mp.get(m, carac_2)
    m_2 = me.getValue(b)
    l_2 = om.values(m_2, min_2, max_2)
    for lists in lt.iterator(l_2):
        for e in lt.iterator(lists):
            if mp.contains(m_reps, e["track_id"]):
                om.put(m_tracks, e["track_id"], e)

    n_tracks = om.size(m_tracks)
    if n_tracks >= 5:
        num = 5
    else:
        num = n_tracks

    random_tracks = random.sample(range(0, n_tracks), num)
    keys = lt.newList(datastructure="ARRAY_LIST")
    l_tracks = lt.newList(datastructure="ARRAY_LIST")

    for n in random_tracks:
        key = om.select(m_tracks, n)
        lt.addLast(keys, key)

    for a in lt.iterator(keys):
        rep = om.get(m_tracks, a)
        rep_info = me.getValue(rep)
        lt.addLast(l_tracks, rep_info)

    return (n_tracks, l_tracks)
def newCatalog():
    """Crea un catalogo con las siguientes entradas:
    1. halfList: Una lista con las entradas del primer archivo csv.
    2. completeList: Una lista de todas las entradas que estan en ambos archivos csv combinadas
    3. Una lista de diccionarios con los artistas y el numero de veces que cada uno se repite en el completeList
    4. Una lista de diccionarios con las pistas y el numero de veces que cada una se repite en el completeList
    5. Un RBT creado para ordenar las entradas del primer archivo csv y poderlas combinar con el segundo archivo."""

    catalog = {
        "halfList": None,
        "completeList": None,
        "artistList": None,
        "trackList": None,
        "trackMap": None
    }

    catalog["halfList"] = lt.newList("SINGLE_LINKED")
    catalog["completeList"] = lt.newList("SINGLE_LINKED")
    catalog["artistList"] = lt.newList("SINGLE_LINKED")
    catalog["trackList"] = lt.newList("SINGLE_LINKED")
    catalog["trackMap"] = om.newMap(omaptype='RBT')
    return catalog
def ServiciosPorCompania(analyzer):
    ServiciosXCompania = om.newMap(omaptype='RBT', comparefunction=compareIds)
    total_servicios = 0
    nombres = om.keySet(analyzer['companias'])
    # print(nombres)
    iter = it.newIterator(nombres)
    while it.hasNext(iter):
        cada_compania = it.next(iter)
        nombre_compania = om.get(analyzer['companias'], cada_compania)
        # print(nombre_compania)
        if nombre_compania['key'] is not None:
            servicios = me.getValue(nombre_compania)['servicios']
            # print(servicios)
            if servicios is not None:
                num_servicios = m.size(servicios)
                total_servicios += num_servicios
                om.put(ServiciosXCompania, num_servicios, cada_compania)
                # print(nombre_compania['key'], num_servicios)
        # print(taxis)
    # print("TOTAL SERVICIOS: "+ str(total_servicios))

    return (ServiciosXCompania)
def newAnalyzer2():
    """ Inicializa el analizador

    Crea una lista vacia para guardar todos los tracks
    Se crean indices (Maps) por los siguientes criterios:
    -Fechas

    Retorna el analizador inicializado.
    """"instrumentalness","liveness","speechiness","danceability","valence"
    analyzer = {'tracks': None,
                'tempo':None,
                'artist_id':None,
                'track_id':None,
                'cantidad':None,
                'vader_avg':None #Para poder usarlos, necesitamos tenerlos como arboles para que se identifiquen (aparezcan en los tracks)
                }
    analyzer['tracks'] = lt.newList('SINGLE_LINKED', compareIds)
    for parte in analyzer:
        if parte!='tracks':
            analyzer[parte]=om.newMap(omaptype='RBT',
                                      comparefunction=compareTracks)
    return analyzer
Ejemplo n.º 5
0
def Arbolde(catalog, Pistas, criterio):
    content = catalog['Content']
    characteristic = mp.get(content, criterio)
    arbol = me.getValue(characteristic)
    if arbol is None:
        arbol = om.newMap(omaptype='RBT', comparefunction=compareValue)
        keyset = mp.keySet(Pistas)
        for num in range(0, lt.size(keyset)):
            llave = lt.getElement(keyset, num)
            pair = mp.get(Pistas, llave)
            if pair != None:
                cancion = me.getValue(pair)
                val_crit = float(cancion[criterio])
                entry = om.get(arbol, val_crit)
                if entry is None:
                    songs = lt.newList()
                    lt.addLast(songs, cancion)
                    om.put(arbol, val_crit, songs)
                else:
                    lt.addLast(me.getValue(entry), cancion)
        mp.put(content, criterio, arbol)
    return arbol
Ejemplo n.º 6
0
def newAnalyzer():
    analyzer = {
        'artists': None,
        'info': None,
        'tracks': None,
        'created_at': None,
        'instrumentalness': None,
        'acousticness': None,
        'liveness': None,
        'speechiness': None,
        'energy': None,
        'danceability': None,
        'valence': None,
        'tempo': None
    }
    analyzer['info'] = mp.newMap(130000, maptype='PROBING')
    analyzer['tracks'] = lt.newList('SINGLE_LINKED')
    analyzer['artists'] = lt.newList('SINGLE_LINKED')
    for car in analyzer:
        if car != 'tracks' and car != 'info' and car != 'artists':
            analyzer[car] = om.newMap(omaptype='RBT', comparefunction=compare)
    return analyzer
def getEventsByRangeTempoReturn(analyzer, criteria, initial, final):
    '''
    Retorna el tempo de los eventos organizados en un arbol RBT
    dado un criterio y rango en el mismo,
    buscándolos en un árbol
    Args:
        analyzer: Analizador de eventos
        criteria: Llave del analyzer a analizar
        initial: Inicio del rango
        final: Fin del rango
    '''
    lst = om.values(analyzer[criteria], initial, final)
    minimap = {'tempo_map': None}
    minimap['tempo_map'] = om.newMap(omaptype='RBT')

    for lstevents in lt.iterator(lst):
        for soundtrackyourtimeline in lt.iterator(lstevents['events']):
            addEventOnOrderedRBTMap(minimap,
                                    float(soundtrackyourtimeline['tempo']),
                                    soundtrackyourtimeline, 'tempo_map')

    return minimap
Ejemplo n.º 8
0
def addTracksByHourTempo(analyzer, track):
    hora = hour_int(track)
    tempo = float(track['tempo'])
    arbol_hora = analyzer['EvByHour']  #arbol principal
    entry_hora = om.get(arbol_hora, hora)  #llave-valor con hora
    if entry_hora is not None:
        arbol_tempo = me.getValue(entry_hora)
        entry_tempo = om.get(arbol_tempo, tempo)
        if entry_tempo is not None:
            estructura = me.getValue(entry_tempo)
            lt.addLast(estructura['mapa_completo'], track)
            mp.put(estructura['mapa_unicos'], track['track_id'], track)
            om.put(arbol_tempo, tempo, estructura)
        else:
            estructura = {
                'mapa_completo':
                lt.newList(datastructure="SINGLE_LINKED",
                           cmpfunction=compareTracks),
                'mapa_unicos':
                mp.newMap(maptype='PROBING', comparefunction=cmpByCarac)
            }
            lt.addLast(estructura['mapa_completo'], track)
            mp.put(estructura['mapa_unicos'], track['track_id'], track)
            om.put(arbol_tempo, tempo, estructura)
    else:
        arbol_tempo = om.newMap(omaptype='RBT', comparefunction=cmpInts)
        estructura = {
            'mapa_completo':
            lt.newList(datastructure="SINGLE_LINKED",
                       cmpfunction=compareTracks),
            'mapa_unicos':
            mp.newMap(maptype='PROBING', comparefunction=cmpByCarac)
        }
        lt.addLast(estructura['mapa_completo'], track)
        mp.put(estructura['mapa_unicos'], track['track_id'], track)
        om.put(arbol_tempo, tempo, estructura)
        om.put(arbol_hora, hora, arbol_tempo)
    return None
Ejemplo n.º 9
0
def newAnalyzer():
    """ Inicializa el analizador

    Crea una lista vacia para guardar todos los crimenes
    Se crean indices (Maps) por los siguientes criterios:
    -Fechas

    Retorna el analizador inicializado.
    """
    analyzer = {
        'events': None,
        'artists': None,
        'tracks': None,
        'sentiments': None,
        'hashtagsbytrack': None
    }

    analyzer['events'] = lt.newList('ARRAY_LIST')

    analyzer['sentiments'] = lt.newList('ARRAY_LIST')

    analyzer['hashtagsbytrack'] = mp.newMap(31000,
                                            maptype='PROBING',
                                            comparefunction=None)

    analyzer['artists'] = mp.newMap(11000,
                                    maptype='PROBING',
                                    comparefunction=None)

    analyzer['tracks'] = mp.newMap(31000,
                                   maptype='PROBING',
                                   comparefunction=None)

    for content in contenttuple:
        analyzer[content] = om.newMap(omaptype='RBT',
                                      comparefunction=compareFloat)

    return analyzer
def newAnalyzer():
    bikes = {
        "Stations": None,
        "Trips": None,
        "grafo": None,
        'paths': None,
        "table": None
    }
    bikes["grafo"] = gr.newGraph(datastructure="ADJ_LIST",
                                 directed=True,
                                 size=1000,
                                 comparefunction=compareStations)
    bikes["topsalida"] = iminpq.newIndexMinPQ(cmpfunction=cmpimin)
    bikes["topllegada"] = iminpq.newIndexMinPQ(cmpfunction=cmpimin)
    bikes["topuso"] = iminpq.newIndexMinPQ(cmpfunction=cmpimin)
    bikes["stationtree"] = om.newMap(omaptype='',
                                     comparefunction=comparebycoord)
    bikes["tablesalida"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["tablellegada"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["mayoressalida"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["mayoresllegada"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["names"] = m.newMap(maptype='', comparefunction=compareIds)

    bikes["BikesIDs"] = m.newMap(50000,
                                 maptype='PROBING',
                                 loadfactor=0.5,
                                 comparefunction=compareIds)

    bikes["ageVertexAHash"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["ageVertexBHash"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["stationVertexAHash"] = m.newMap(maptype='',
                                           comparefunction=compareIds)
    bikes["stationVertexBHash"] = m.newMap(maptype='',
                                           comparefunction=compareIds)
    bikes["ageTrips"] = m.newMap(maptype='', comparefunction=compareIds)
    bikes["agesA"] = lt.newList('SINGLE_LINKED')
    bikes["agesB"] = lt.newList('SINGLE_LINKED')
    return bikes
Ejemplo n.º 11
0
def getCar(analyzer, car: str):

    datos = analyzer['eventos']

    newTree = om.newMap(omaptype='RBT', comparefunction=cmpCarValue)

    for audio in lt.iterator(datos):

        valor = audio[car]

        entry = om.get(newTree, valor)

        if not entry:
            lista = lt.newList("ARRAY_LIST")
            lt.addLast(lista, audio)

            om.put(newTree, valor, lista)

        else:

            lt.addLast(entry['value'], audio)

    return newTree
Ejemplo n.º 12
0
def getEventsByTimeRange(analyzer, initialValue, finalValue):
    """
    Retorna el número de eventos y el map de eventos en un rango determinado
    de tiempo en horas, minutos y segundos (%H:%M:%S)
    """
    map = om.newMap('RBT')
    initialTime = datetime.datetime.strptime(initialValue, '%H:%M:%S').time()
    finalTime = datetime.datetime.strptime(finalValue, '%H:%M:%S').time()
    lstevents = om.values(analyzer['time'], initialTime, finalTime)
    totalevents = 0
    for lstevents in lt.iterator(lstevents):
        totalevents += lt.size(lstevents['events'])
        for event in lt.iterator(lstevents['events']):
            key = float(event['tempo'])
            existkey = om.contains(map, key)
            if existkey:
                entry = om.get(map, key)
                value = me.getValue(entry)
            else:
                value = newValue(key)
                om.put(map, key, value)
            lt.addLast(value['events'], event)
    return map, totalevents
Ejemplo n.º 13
0
def newCatalog():
    """ 
    Inicializa el catalogo crea una lista vacia para guardar todas las musicas
    Se crean indices (Maps) por los siguientes criterios:

    -Caracterista de contenido
    -Genero de la musica
    -Fecha de la musica

    Retorna el catalogo inicializado.
    """
    catalog = {
        'videosContext': None,
        'caraContenido': None,
        'musicalGenero': None,
        'fechaMusica': None
    }

    catalog['videosContext'] = lt.newList('ARRAY_LIST')
    catalog['caraContenido'] = mp.newMap(30, maptype='PROBING', loadfactor=0.4)
    catalog['musicaGenero'] = mp.newMap(30, maptype='PROBING', loadfactor=0.4)
    catalog['fechaMusica'] = om.newMap('RBT')

    return catalog
def newAnalyzer():
    Taxis = {"Hash": None}
    Taxis["Hash"] = m.newMap(maptype='', comparefunction=compareStopIds)
    Taxis["lst"] = [
        "00:00", "00:15", "00:30", "00:45", "01:00", "01:15", "01:30", "01:45",
        "02:00", "02:15", "02:30", "02:45", "03:00", "03:15", "03:30", "03:45",
        "04:00", "04:15", "04:30", "04:45", "05:00", "05:15", "05:30", "5:45",
        "06:00", "06:15", "06:30", "06:45", "07:00", "07:15", "07:30", "07:45",
        "08:00", "08:15", "08:30", "08:45", "09:00", "09:15", "09:30", "09:45",
        "10:00", "10:15", "10:30", "10:45", "11:00", "11:15", "11:30", "11:45",
        "12:00", "12:15", "12:30", "12:45", "13:00", "13:15", "13:30", "13:45",
        "14:00", "14:15", "14:30", "14:45", "15:00", "15:15", "15:30", "15:45",
        "16:00", "16:15", "16:30", "16:45", "17:00", "17:15", "17:30", "17:45",
        "18:00", "18:15", "18:30", "18:45", "19:00", "19:15", "19:30", "19:45",
        "20:00", "20:15", "20:30", "20:45", "21:00", "21:15", "21:30", "21:45",
        "22:00", "22:15", "22:30", "22:45", "23:00", "23:15", "23:30", "23:45"
    ]
    Taxis["dateIndex"] = om.newMap(omaptype='BST',
                                   comparefunction=compareDates)
    Taxis["Brand"] = m.newMap(maptype='', comparefunction=compareStopIds)
    Taxis["ids"] = m.newMap(maptype='', comparefunction=compareStopIds)
    Taxis["afiliado"] = imaxpq.newIndexMaxPQ(cmpimin)
    Taxis["servicio"] = imaxpq.newIndexMaxPQ(cmpimin)
    return Taxis
Ejemplo n.º 15
0
def top3salida(analyzer):
    outree = om.newMap(omaptype="RBT", comparefunction=compareIds)
    pqiterator = it.newIterator(vertexNames(analyzer))
    while it.hasNext(pqiterator):
        vert = int(it.next(pqiterator))
        salidas = gr.outdegree(analyzer["graph"], str(vert))
        if not om.contains(outree, salidas):
            om.put(outree, salidas, str(vert))
        else:
            A = om.get(outree, salidas)
            B = me.getValue(A)
            om.put(outree, salidas, str(B)+","+str(vert))
    estaciones = lt.newList(datastructure="ARRAY_LIST")
    while lt.size(estaciones) < 3:
        val = om.get(outree, om.maxKey(outree))
        val1 = me.getValue(val)
        mayorsalida = val1.split(",")
        for i in mayorsalida:
            if lt.size(estaciones) < 3:
                K = m.get(analyzer["nameIndex"], i)
                L = me.getValue(K)
                lt.addLast(estaciones, L)
        om.deleteMax(outree)
    return estaciones
Ejemplo n.º 16
0
def companyRanking(analyzer, M):

    companies = om.keySet(analyzer["companiesRanking"])
    taxis = om.valueSet(analyzer["companiesRanking"])
    mapa = om.newMap(omaptype="BST", comparefunction=cmpCompanies)

    for i in range(lt.size(companies)):

        empresa = lt.getElement(companies, i)
        numtaxi = lt.getElement(taxis, i)

        if om.contains(mapa, numtaxi) == True:
            infonum = om.get(mapa, numtaxi)
            empresas = infonum["value"]
            lt.addLast(empresas, empresa)
            om.put(mapa, numtaxi, empresas)
        else:
            empresas = lt.newList("ARRAY_LIST", None)
            lt.addLast(empresas, empresa)
            om.put(mapa, numtaxi, empresas)

    tam = om.size(mapa)
    tam = tam - 1

    for i in range(M):
        k = tam - i
        emp = om.select(mapa, k)
        pareja = om.get(mapa, emp)
        lista = pareja["value"]
        numt = lista["elements"]
        info = str(tam - k + 1) + ". " + str(numt[0]) + ": " + str(emp)
        print(info)

    result = ".."

    return result
Ejemplo n.º 17
0
def caracterizarrep(cat, carac, minimo, maximo):
    m = cat["features"]
    a = mp.get(m, carac)
    m_carac = me.getValue(a)
    l_reps = om.values(m_carac, minimo, maximo)

    t_artists = om.newMap(omaptype='RBT', comparefunction=compareValue)
    num_reps = 0

    for lists in lt.iterator(l_reps):
        size = lt.size(lists)
        num_reps += size
        for reps in lt.iterator(lists):
            artist = reps["artist_id"]
            if om.contains(t_artists, artist):
                c = om.get(t_artists, artist)
                l_artist = me.getValue(c)
            else:
                l_artist = lt.newList(datastructure="SINGLE_LINKED")
            lt.addLast(l_artist, reps)
            om.put(t_artists, artist, l_artist)

    artists = om.size(t_artists)
    return (num_reps, artists, t_artists)
Ejemplo n.º 18
0
def newAnalyzer():
    """ Inicializa el analizador
    """
    analyzer = {
        "lista": None,
        "mapcompany": None,
        "taxids": None,
    }
    analyzer["lista"] = lt.newList("ARRAY_LIST")
    analyzer["mapcompany"] = m.newMap(numelements=37,
                                      maptype="CHAINING",
                                      loadfactor=0.4,
                                      comparefunction=comparecompany)
    analyzer["MapaId"] = op.newMap(omaptype='RBT',
                                   comparefunction=compareDates)
    analyzer["taxids"] = m.newMap(numelements=37,
                                  maptype="CHAINING",
                                  loadfactor=0.4,
                                  comparefunction=comparecompany)
    analyzer['grafo'] = gr.newGraph(datastructure='ADJ_LIST',
                                    directed=True,
                                    size=300,
                                    comparefunction=comparecompany)
    return analyzer
Ejemplo n.º 19
0
def newMapOrdenado():

    dicci = {}

    dicci['instrumentalness'] = om.newMap(omaptype='BRT',
                                          comparefunction=compareDates)

    dicci['acousticness'] = om.newMap(omaptype='BRT',
                                      comparefunction=compareDates)

    dicci['liveness'] = om.newMap(omaptype='BRT', comparefunction=compareDates)

    dicci['speechiness'] = om.newMap(omaptype='BRT',
                                     comparefunction=compareDates)

    dicci['energy'] = om.newMap(omaptype='BRT', comparefunction=compareDates)

    dicci['danceability'] = om.newMap(omaptype='BRT',
                                      comparefunction=compareDates)

    dicci['valence'] = om.newMap(omaptype='BRT', comparefunction=compareDates)

    return dicci
 def __init__(self):
     self.Route = orderedmap.newMap(comparefunction=cmp.compareDate)
Ejemplo n.º 21
0
def analyzer_context():
    analyzer_context = {
        "eventos": None,
        "index": None,
        "userid": None,
        "track_id": None,
        "instrumentalness": None,
        "liveness": None,
        "speechiness": None,
        "danceability": None,
        "valence": None,
        "loudness": None,
        "tempo": None,
        "acousticness": None,
        "energy": None,
        "artist_id": None,
        "created_at": None,
        "time_zone": None
    }
    analyzer_context["eventos"] = m.newMap(numelements=63400,
                                           prime=109345121,
                                           maptype="CHAINING",
                                           loadfactor=1,
                                           comparefunction=comparer)
    analyzer_context["index"] = om.newMap(omaptype="RBT",
                                          comparefunction=compareDates)
    analyzer_context["artist_id"] = om.newMap(omaptype="RBT",
                                              comparefunction=compareDates)
    analyzer_context["userid"] = om.newMap(omaptype="RBT",
                                           comparefunction=compareDates)
    analyzer_context["track_id"] = om.newMap(omaptype="RBT",
                                             comparefunction=compareDates)
    analyzer_context["created_at"] = om.newMap(omaptype="RBT",
                                               comparefunction=compareTime)
    analyzer_context["instrumentalness"] = om.newMap(
        omaptype="RBT", comparefunction=compareLat)
    analyzer_context["liveness"] = om.newMap(omaptype="RBT",
                                             comparefunction=compareLiv)
    analyzer_context["speechiness"] = om.newMap(omaptype="RBT",
                                                comparefunction=compareLiv)
    analyzer_context["danceability"] = om.newMap(omaptype="RBT",
                                                 comparefunction=compareLiv)
    analyzer_context["valence"] = om.newMap(omaptype="RBT",
                                            comparefunction=compareLiv)
    analyzer_context["loudness"] = om.newMap(omaptype="RBT",
                                             comparefunction=compareLiv)
    analyzer_context["tempo"] = om.newMap(omaptype="RBT",
                                          comparefunction=compareLiv)
    analyzer_context["acousticness"] = om.newMap(omaptype="RBT",
                                                 comparefunction=compareLiv)
    analyzer_context["energy"] = om.newMap(omaptype="RBT",
                                           comparefunction=compareLiv)
    analyzer_context["time_zone"] = om.newMap(omaptype="RBT",
                                              comparefunction=compareZone)

    return analyzer_context
def position():
    return {
        'latitude': orderedmap.newMap('RBT', Comparation.compareIdTree),
        'longitude': orderedmap.newMap('RBT', Comparation.compareIdTree),
    }
Ejemplo n.º 23
0
def newCatalogo():
    """ Inicializa el analizador

    Crea una lista vacia para guardar todos los crimenes
    Se crean indices (Maps) por los siguientes criterios:
    -Fechas

    Retorna el analizador inicializado.
    """
    catalogo = {'events': None, 'artistas': None, 'pistas': None}

    catalogo['events'] = lt.newList('SINGLE_LINKED', compareIds)
    catalogo['eventos_id'] = om.newMap(omaptype='RBT',
                                       comparefunction=compareIds)

    catalogo['artistas'] = om.newMap(omaptype='RBT',
                                     comparefunction=compareIds)
    catalogo['pistas'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['instrumentalness'] = om.newMap(omaptype='RBT',
                                             comparefunction=compareIds)
    catalogo['liveness'] = om.newMap(omaptype='RBT',
                                     comparefunction=compareIds)
    catalogo['speechiness'] = om.newMap(omaptype='RBT',
                                        comparefunction=compareIds)
    catalogo['danceability'] = om.newMap(omaptype='RBT',
                                         comparefunction=compareIds)
    catalogo['valence'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['loudness'] = om.newMap(omaptype='RBT',
                                     comparefunction=compareIds)
    catalogo['tempo'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['acousticness'] = om.newMap(omaptype='RBT',
                                         comparefunction=compareIds)
    catalogo['energy'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['mode'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['key'] = om.newMap(omaptype='RBT', comparefunction=compareIds)
    catalogo['hashtags'] = om.newMap(omaptype='RBT', comparefunction=None)
    catalogo['dates'] = om.newMap(omaptype='RBT', comparefunction=None)

    return catalogo
def New_list():
    lista = {"Accidentes": None, "Fechas": None, "Horas": None}
    lista['Accidentes'] = lt.newList('SINGLE_LINKED', compareAccidentes)
    lista['Fechas'] = om.newMap(omaptype='RBT', comparefunction=compararFechas)
    lista['Horas'] = om.newMap(omaptype='RBT', comparefunction=compararHoras)
    return lista
Ejemplo n.º 25
0
def newAnalyzer():

    analyzer = {
        'content_features': None,
        'track_hashtag': None,
        'Sentiment_values': None,
        'instrumentalness': None,
        'liveness': None,
        'speechiness': None,
        'danceability': None,
        'valence': None,
        'acousticness': None,
        'energy': None,
        'Nombre_generos': None
    }

    #Lists
    analyzer['content_features'] = lt.newList('ARRAY_LIST')
    analyzer['track_hashtag_lst'] = lt.newList('ARRAY_LIST')

    #Binary Trees
    #analyzer['content_features_req5'] = lt.newList('ARRAY_LIST')
    analyzer['track_hashtag'] = lt.newList('ARRAY_LIST')
    analyzer['Sentiment_values'] = lt.newList('ARRAY_LIST')

    #Binary Trees
    analyzer['time_of_event'] = om.newMap(omaptype='BST')
    analyzer['instrumentalness'] = om.newMap(omaptype='BST')
    analyzer['liveness'] = om.newMap(omaptype='BST')
    analyzer['speechiness'] = om.newMap(omaptype='BST')
    analyzer['danceability'] = om.newMap(omaptype='BST')
    analyzer['valence'] = om.newMap(omaptype='BST')
    analyzer['acousticness'] = om.newMap(omaptype='BST')
    analyzer['energy'] = om.newMap(omaptype='BST')

    analyzer['artistas'] = mp.newMap(numelements=65,
                                     maptype='PROBING',
                                     loadfactor=0.3)
    analyzer['unique_tracks_init'] = mp.newMap(numelements=65,
                                               maptype='PROBING',
                                               loadfactor=0.3)

    #Binary Trees para generos
    analyzer['generos'] = om.newMap(omaptype='BST')
    analyzer['Reggae'] = mp.newMap(numelements=65,
                                   maptype='PROBING',
                                   loadfactor=0.3)
    analyzer['Down-tempo'] = mp.newMap(numelements=65,
                                       maptype='PROBING',
                                       loadfactor=0.3)
    analyzer['Chill-out'] = mp.newMap(numelements=65,
                                      maptype='PROBING',
                                      loadfactor=0.3)
    analyzer['Hip-hop'] = mp.newMap(numelements=65,
                                    maptype='PROBING',
                                    loadfactor=0.3)
    analyzer['Jazz and Funk'] = mp.newMap(numelements=65,
                                          maptype='PROBING',
                                          loadfactor=0.3)
    analyzer['Pop'] = mp.newMap(numelements=65,
                                maptype='PROBING',
                                loadfactor=0.3)
    analyzer['R&B'] = mp.newMap(numelements=65,
                                maptype='PROBING',
                                loadfactor=0.3)
    analyzer['Rock'] = mp.newMap(numelements=65,
                                 maptype='PROBING',
                                 loadfactor=0.3)
    analyzer['Metal'] = mp.newMap(numelements=65,
                                  maptype='PROBING',
                                  loadfactor=0.3)
    #Lista para generos
    analyzer['Nombre_generos'] = lt.newList('ARRAY_LIST')
    analyzer['generos_tempos'] = mp.newMap(numelements=65,
                                           maptype='PROBING',
                                           loadfactor=0.3)
    #arbol binario hash table
    analyzer['track_hashtag'] = om.newMap(omaptype='RBT')
    analyzer['Sentiment_values'] = om.newMap(omaptype='BST')

    analyzer['ferrari'] = mp.newMap(numelements=65,
                                    maptype='PROBING',
                                    loadfactor=0.3)
    #Árbol Binario Hashtags
    analyzer['track_hashtags'] = om.newMap(omaptype='BST')

    #Árbol Binario Sentiment
    analyzer['sentiment_values'] = om.newMap(omaptype='BST')

    #Árbol Binario Llave Tempo Valor Género
    analyzer['tempo_genero'] = om.newMap(omaptype='BST')

    #Arbol Binario Completo Req 5
    analyzer['hash_generos'] = om.newMap(omaptype='BST')

    return analyzer
def tree():
    tree = om.newMap(omaptype='BST')
    return tree
Ejemplo n.º 27
0
def newAnalyzer():
    """ Inicializa el analizador

    Crea una lista vacia para guardar todos los crimenes
    Se crean indices (Maps) por los siguientes criterios:
    -Fechas

    Retorna el analizador inicializado.
    """
    analyzer = {
        'events': None,
        'dateIndex': None,
        'sentiments': None,
        'content': None,
    }

    analyzer['sentiments'] = mp.newMap(maptype='PROBING')

    analyzer['content'] = mp.newMap(maptype="PROBING")
    #Instrumentalness: Crea un tree con los valores
    instrumentalnessTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'instrumentalness', instrumentalnessTree)
    #Liveness: Crea un tree con los valores
    livenessTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'liveness', livenessTree)
    #Speechiness: Crea un tree con los valores
    speechinessTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'speechiness', speechinessTree)
    #Danceability: Crea un tree con los valores
    danceabilityTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'danceability', danceabilityTree)
    #Valence: Crea un tree con los valores
    valenceTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'valence', valenceTree)
    #Loudness: Crea un tree con los valores
    loudnessTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'loudness', loudnessTree)
    #Tempo: Crea un tree con los valores
    tempoTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'tempo', tempoTree)
    #Acousticness: Crea un tree con los valores
    acousticnessTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'acousticness', acousticnessTree)
    #Energy: Crea un tree con los valores
    energyTree = om.newMap(comparefunction=compareValues)
    mp.put(analyzer['content'], 'energy', energyTree)

    analyzer['events'] = lt.newList("ARRAY_LIST", cmpfunction=compareIds2)

    analyzer['track_id'] = om.newMap(omaptype='RBT')

    analyzer['artists'] = om.newMap(omaptype='RBT',
                                    comparefunction=compareIds1)

    analyzer['created_at'] = om.newMap(omaptype='RBT',
                                       comparefunction=compareTime)

    analyzer['created_at-hashtag'] = om.newMap(omaptype='RBT',
                                               comparefunction=compareTime)

    return analyzer
Ejemplo n.º 28
0
def Req5(analyzer, time1, time2):
    arbolHoras = analyzer["created_at"]  #Sacamos el arbol organizado por horas
    valoresHoras = om.values(
        arbolHoras, time1,
        time2)  #Sacar los valores del arbol en el rango de horas
    arbolPorTempo = om.newMap(omaptype="RBT", comparefunction=compareValues
                              )  #Crear un arbol vacio organizado por tempo
    for lista in lt.iterator(valoresHoras):  #Recorrer la lista de listas
        for evento in lt.iterator(lista):  #Recorrer cada lista de eventos
            tempo = float(evento['tempo'])  #Abstraer el tempo del evento
            existe = om.get(
                arbolPorTempo,
                tempo)  #Revisar si el tempo ya fue creado en el arbol de tempo
            if existe is None:  #Si no esta creado
                eventList = lt.newList(
                    'ARRAY_LIST',
                    cmpfunction=compareValues)  # Crear una lista vacia
                om.put(
                    arbolPorTempo, tempo,
                    eventList)  #Agregar la lista al nodo de tempo respectivo
            else:  #Si está creado
                eventList = me.getValue(existe)  #Recuperar la lista del nodo
            lt.addLast(
                eventList, evento
            )  #Agregar el evento del rango de horas a la lista del respectivo nodo de tempo
    mapaPorGenero = mp.newMap(maptype="PROBING")  #Se crea un diccionario vacio
    mapaPorSize = om.newMap(omaptype="RBT")  #Se crea un arbol vacio
    for genero in [
            "Reggae", "Down-tempo", "Chill-out", "Hip-hop", "Jazz and Funk",
            "Pop", "R&B", "Rock", "Metal"
    ]:  #Por cada genero que existe
        pistas, minTempo, maxTempo = pistasPorGenero(
            arbolPorTempo, genero, None,
            None)  #Se saca la lista de listas con los eventos por genero
        listaEventos = lt.newList(
            "ARRAY_LIST", cmpfunction=compareIds2
        )  #Se crea una lista vacia donde se guardaran los eventos por genero
        for lista in lt.iterator(pistas):  #Se recorre la lista de listas
            for evento in lt.iterator(
                    lista):  #Se recorre cada lista de eventos
                lt.addLast(listaEventos,
                           evento)  #Se añade el evento a la lista del genero
        sizeLista = lt.size(
            listaEventos)  #Se saca el tamaño de la lista del genero
        mp.put(
            mapaPorGenero, genero, listaEventos
        )  #Se agrega la lista de eventos al mapa con llave el respectivo genero
        om.put(
            mapaPorSize, sizeLista, genero
        )  #Se agrega al mapaPorSize el numero de reps del genero como llave y el genero como valor
    mayorsize = om.maxKey(mapaPorSize)
    entry = om.get(mapaPorSize, mayorsize)
    mayorGenero = me.getValue(entry)
    entry = mp.get(
        mapaPorGenero,
        mayorGenero)  #Se sacan los eventos del genero que más se repitió
    eventosMayorGenero = me.getValue(entry)
    uniqueTracks = mp.newMap(
        maptype="PROBING"
    )  #Se crea un mapa vacio para sacar los track_id unicos
    for evento in lt.iterator(eventosMayorGenero):
        existe = mp.get(uniqueTracks, evento["track_id"])
        if existe is None:
            lista_hashtags = lt.newList()
            mp.put(uniqueTracks, evento["track_id"], lista_hashtags)
        else:
            lista_hashtags = me.getValue(existe)
        for hashtag in lt.iterator(
                evento["hashtag"]
        ):  #Se recorre la lista de hashtags del evento
            lt.addLast(
                lista_hashtags,
                hashtag)  #Se agrega cada ht a la lista de ht de la pista única
    llavesTrackId = mp.keySet(uniqueTracks)
    totalUniqueTracks = lt.size(llavesTrackId)
    random10Tracks = lt.subList(llavesTrackId,
                                random.randint(1, totalUniqueTracks - 10), 10)
    sample = lt.newList()
    for trackId in lt.iterator(random10Tracks):
        entry = mp.get(uniqueTracks, trackId)
        hashtagsEvento = me.getValue(entry)
        vaderAvg = 0
        totalHt = 0
        for hashtag in lt.iterator(hashtagsEvento):
            entry = mp.get(analyzer["sentiments"], hashtag.lower())
            if entry is not None:
                vader = me.getValue(entry)
                if vader is not None:
                    vaderAvg += vader
                    totalHt += 1
        if totalHt > 0:
            vaderAvg /= totalHt
        lt.addLast(sample, (trackId, totalHt, round(vaderAvg, 1)))

    return om.size(arbolPorTempo), mapaPorSize, totalUniqueTracks, sample
def newCatalog():
    """ Inicializa el catálogo

    Retorna el catálogo inicializado.
    """
    catalog = {
        'RepsPor_instrumentalness': None,
    }

    #-----------------------------------------------------------------------------------------------------------
    #-----------------------------------------------------------------------------------------------------------
    #Carga:
    catalog['Artistas_Unicos'] = mp.newMap(maptype='PROBING')
    catalog['Pistas_Unicas'] = mp.newMap(maptype='PROBING')
    #-----------------------------------------------------------------------------------------------------------
    #-----------------------------------------------------------------------------------------------------------
    #Req1:
    #por cada caracteristica se hace un mapa ordenado que tiene los valores de la caracteristica como llaves y a la lista de
    # las reproducciones con el valor correspondiente a la caracteristica
    catalog['RepsPor_instrumentalness'] = om.newMap(
        omaptype='RBT', comparefunction=MAPcompareDecimals)
    catalog['RepsPor_liveness'] = om.newMap(omaptype='RBT',
                                            comparefunction=MAPcompareDecimals)
    catalog['RepsPor_speechiness'] = om.newMap(
        omaptype='RBT', comparefunction=MAPcompareDecimals)
    catalog['RepsPor_energy'] = om.newMap(omaptype='RBT',
                                          comparefunction=MAPcompareDecimals)
    catalog['RepsPor_acousticness'] = om.newMap(
        omaptype='RBT', comparefunction=MAPcompareDecimals)
    catalog['RepsPor_danceability'] = om.newMap(
        omaptype='RBT', comparefunction=MAPcompareDecimals)
    catalog['RepsPor_valence'] = om.newMap(omaptype='RBT',
                                           comparefunction=MAPcompareDecimals)
    #-----------------------------------------------------------------------------------------------------------
    #-----------------------------------------------------------------------------------------------------------
    #Req 4
    #Generos: Aqui se guardaran las reproducciones partidas por generos:
    # es decir: esto es un mapa/hashTable donde una llave es un genero(nombre del genero) y su valor es una tupla:
    # 1: una tupla de los limites del rango 2. la lista de reproducciones que segun su tempo/bpm corresponden a ese genero
    #OJO una MISMA EXACTA REPRODUCCION puede estar en la lista de distintos generos porque puede pertenecer a mas de un genero a la vez
    generos = mp.newMap(loadfactor=4.0)
    mp.put(generos, 'Reggae',
           ((60, 90), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Down-Tempo',
           ((70, 100), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Chill-Out',
           ((90, 120), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Hip-Hop',
           ((85, 115), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Jazz and Funk',
           ((120, 125), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Pop',
           ((100, 130), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'R&B', ((60, 80), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Rock',
           ((110, 140), lt.newList(datastructure='ARRAY_LIST')))
    mp.put(generos, 'Metal',
           ((100, 160), lt.newList(datastructure='ARRAY_LIST')))
    catalog['Generos'] = generos

    #reproducciones totales:
    catalog['Reproducciones_totales'] = mp.newMap(loadfactor=4.0)
    #-----------------------------------------------------------------------------------------------------------
    #-----------------------------------------------------------------------------------------------------------
    # REQ 5:
    catalog['RepsPor_hora'] = om.newMap(omaptype='RBT',
                                        comparefunction=MAPCompararHoras)

    catalog['Hashtags'] = mp.newMap(maptype='PROBING')
    return catalog
Ejemplo n.º 30
0
def newCatalog():
    """ Inicializa el analizador
    Crea una lista vacia para guardar todos los crimenes
    Se crean indices (Maps) por los siguientes criterios:
    -Fechas
    Retorna el analizador inicializado.
    """
    catalog = {
        'eventos': None,
        'energy': None,
        'instrumentalness': None,
        'danceability': None,
        'tempo': None,
        'acousticness': None,
        'hashtags': None,
        'time': None
    }
    catalog['eventos'] = lt.newList(datastructure='ARRAY_LIST')
    catalog['energy'] = om.newMap(omaptype="RBT")
    catalog['instrumentalness'] = om.newMap(omaptype="RBT")
    catalog['danceability'] = om.newMap(omaptype="RBT")
    catalog['tempo'] = om.newMap(omaptype="RBT")
    catalog['acousticness'] = om.newMap(omaptype="RBT")
    catalog['liveness'] = om.newMap(omaptype="RBT")
    catalog['speechiness'] = om.newMap(omaptype="RBT")
    catalog['valence'] = om.newMap(omaptype="RBT")
    catalog['time'] = om.newMap(omaptype="RBT")
    catalog["energy"] = om.newMap(omaptype="RBT")
    catalog["hashtags"] = mp.newMap(maptype="PROBING", loadfactor=0.5)
    catalog['hashtagsportrack'] = mp.newMap(maptype="PROBING", loadfactor=0.5)
    catalog['tiempo'] = om.newMap(omaptype="RBT")
    return catalog