import theano.tensor as T import numpy from DL.models.MLP import MLP from DL.optimizers import optimize from DL import datasets from DL.utils import * import time # from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams # hide warnings import warnings warnings.simplefilter("ignore") print "An MLP with dropout on MNIST." print "loading MNIST" mnist = datasets.mnist() print "loading data to the GPU" dataset = load_data(mnist) print "creating the MLP" x = T.matrix('x') # input t = T.vector('t') # targets inputs = [x, t] # cast to an int. needs to be initially a float to load to the GPU it = t.astype('int64') rng = numpy.random.RandomState(int(time.time())) # random number generator # srng = RandomStreams(int(time.time())) srng = T.shared_randomstreams.RandomStreams(int(time.time()))
import theano.tensor as T import numpy from DL.models.MLP import MLP from DL.optimizers import optimize from DL import datasets from DL.utils import * import time # hide warnings import warnings warnings.simplefilter("ignore") print "An MLP on MNIST." print "loading MNIST" mnist = datasets.mnist() print "loading data to the GPU" dataset = load_data(mnist) print "creating the MLP" x = T.matrix('x') # input t = T.vector('t') # targets inputs = [x, t] # cast to an int. needs to be initially a float to load to the GPU it = t.astype('int64') rng = numpy.random.RandomState(int(time.time())) # random number generator # construct the MLP class mlp = MLP(