Ejemplo n.º 1
0
 def testNeuralGPU(self):
     hparams = common_hparams.basic_params1()
     batch_size = 3
     input_length = 5
     target_length = input_length
     input_vocab_size = 9
     target_vocab_size = 11
     p_hparams = problem_hparams.test_problem_hparams(
         input_vocab_size, target_vocab_size)
     inputs = -1 + np.random.random_integers(
         input_vocab_size, size=(batch_size, input_length, 1, 1))
     targets = -1 + np.random.random_integers(
         target_vocab_size, size=(batch_size, target_length, 1, 1))
     with self.test_session() as session:
         features = {
             "inputs": tf.constant(inputs, dtype=tf.int32),
             "targets": tf.constant(targets, dtype=tf.int32)
         }
         model = neural_gpu.NeuralGPU(hparams, tf.estimator.ModeKeys.TRAIN,
                                      p_hparams)
         shadred_logits, _ = model.model_fn(features)
         logits = tf.concat(shadred_logits, 0)
         session.run(tf.global_variables_initializer())
         res = session.run(logits)
     self.assertEqual(res.shape,
                      (batch_size, target_length, 1, 1, target_vocab_size))
Ejemplo n.º 2
0
    def testLSTMSeq2SeqAttention(self):
        vocab_size = 9
        x = np.random.random_integers(1,
                                      high=vocab_size - 1,
                                      size=(3, 5, 1, 1))
        y = np.random.random_integers(1,
                                      high=vocab_size - 1,
                                      size=(3, 6, 1, 1))
        hparams = lstm.lstm_attention()

        p_hparams = problem_hparams.test_problem_hparams(
            vocab_size, vocab_size)
        x = tf.constant(x, dtype=tf.int32)
        x._shape = tf.TensorShape([None, None, 1, 1])

        with self.test_session() as session:
            features = {
                "inputs": x,
                "targets": tf.constant(y, dtype=tf.int32),
            }
            model = lstm.LSTMSeq2seqAttention(hparams,
                                              tf.estimator.ModeKeys.TRAIN,
                                              p_hparams)
            sharded_logits, _ = model.model_fn(features)
            logits = tf.concat(sharded_logits, 0)
            session.run(tf.global_variables_initializer())
            res = session.run(logits)
        self.assertEqual(res.shape, (3, 6, 1, 1, vocab_size))
Ejemplo n.º 3
0
  def testTransformer(self):
    batch_size = 3
    input_length = 5
    target_length = 7
    vocab_size = 9
    hparams = transformer_revnet_test()
    p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size)
    hparams.problems = [p_hparams]
    inputs = -1 + np.random.random_integers(
        vocab_size, size=(batch_size, input_length, 1, 1))
    targets = -1 + np.random.random_integers(
        vocab_size, size=(batch_size, target_length, 1, 1))
    features = {
        "inputs": tf.constant(inputs, dtype=tf.int32),
        "targets": tf.constant(targets, dtype=tf.int32),
        "target_space_id": tf.constant(1, dtype=tf.int32),
    }
    model = transformer_revnet.TransformerRevnet(
        hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
    sharded_logits, _ = model.model_fn(features)
    logits = tf.concat(sharded_logits, 0)
    grads = tf.gradients(
        tf.reduce_mean(logits), [features["inputs"]] + tf.global_variables())
    grads = [g for g in grads if g is not None]

    with self.test_session() as session:
      session.run(tf.global_variables_initializer())
      logits_val, _ = session.run([logits, grads])
    self.assertEqual(logits_val.shape, (batch_size, target_length, 1, 1,
                                        vocab_size))
Ejemplo n.º 4
0
 def testByteNet(self):
   vocab_size = 9
   x = np.random.random_integers(1, high=vocab_size - 1, size=(3, 5, 1, 1))
   y = np.random.random_integers(1, high=vocab_size - 1, size=(3, 6, 1, 1))
   hparams = bytenet.bytenet_base()
   p_hparams = problem_hparams.test_problem_hparams(vocab_size, vocab_size)
   with self.test_session() as session:
     features = {
         "inputs": tf.constant(x, dtype=tf.int32),
         "targets": tf.constant(y, dtype=tf.int32),
     }
     model = bytenet.ByteNet(
         hparams, tf.estimator.ModeKeys.TRAIN, p_hparams)
     sharded_logits, _ = model.model_fn(features)
     logits = tf.concat(sharded_logits, 0)
     session.run(tf.global_variables_initializer())
     res = session.run(logits)
   self.assertEqual(res.shape, (3, 50, 1, 1, vocab_size))
Ejemplo n.º 5
0
    def getModel(self, hparams, mode=tf.estimator.ModeKeys.TRAIN):
        hparams.hidden_size = 8
        hparams.filter_size = 32
        hparams.num_heads = 1
        hparams.layer_prepostprocess_dropout = 0.0

        p_hparams = problem_hparams.test_problem_hparams(
            VOCAB_SIZE, VOCAB_SIZE)
        hparams.problems = [p_hparams]

        inputs = -1 + np.random.random_integers(
            VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1))
        targets = -1 + np.random.random_integers(
            VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1))
        features = {
            "inputs": tf.constant(inputs, dtype=tf.int32),
            "targets": tf.constant(targets, dtype=tf.int32),
            "target_space_id": tf.constant(1, dtype=tf.int32),
        }

        return transformer.Transformer(hparams, tf.estimator.ModeKeys.PREDICT,
                                       p_hparams), features