Ejemplo n.º 1
0
def interleave(stack: Stack) -> Stack:
    queue = Queue()
    # interleaving the elements
    for i in range(1, len(stack)):
        for _ in range(i, len(stack)):
            queue.enqueue(stack.pop())
        for _ in range(len(queue)):
            stack.push(queue.dequeue())
    return stack
def deserialize(string: str) -> BinaryTree:
    # the string needs to have the same format as the binary tree serialization
    # eg: data is padded with single quotes (') and comma (,) is used as a delimiter
    data = string.split(",")
    queue = Queue()
    for node in data:
        queue.enqueue(node)
    tree = BinaryTree()
    tree.root = Node(queue.dequeue().strip("'"))
    deserialize_helper(tree.root, queue)
    return tree
Ejemplo n.º 3
0
    def a_to_b(n1, n2):
        q = Queue()
        visited = {n1}
        q.enqueue(n1)

        while not q.is_empty():
            current = q.dequeue()
            if current == n2:
                return True
            for child in current.children:
                if child not in visited:
                    visited.add(child)
                    q.enqueue(child)
        return False
def remove_island(matrix: Matrix, position: Position,
                  grid_shape: GridShape) -> None:
    # using bfs to remove the islands
    queue = Queue()
    queue.enqueue(position)

    while not queue.is_empty():
        curr_position = queue.dequeue()
        i, j = curr_position
        if matrix[i][j] == 1:
            matrix[i][j] = 0
            for neighbour in get_neighbours((i, j), grid_shape):
                y, x = neighbour
                if matrix[y][x] == 1:
                    queue.enqueue(neighbour)
Ejemplo n.º 5
0
def is_subtree(T1, T2):
    """

    :param T1:
    :param T2:
    :return:
    """
    q = Queue()
    q.enqueue(T1)

    while not q.is_empty():
        node = q.dequeue()
        if node.value == T2.value and treequal(node, T2):
            return True
        for child in node.children:
            q.enqueue(child)
    return False
Ejemplo n.º 6
0
def hot_potato(name_list, num):

    #number_of_rounds
    number_of_rounds = num

    #empty queue
    sim_queue = Queue()

    #populate the Queue
    for name in name_list:
        sim_queue.enqueue(name)

    print(sim_queue.items)

    #game end when Queue.size == 1
    while sim_queue.size() > 1:

        #loop till the number_of_rounds limit
        for index in range(number_of_rounds):

            #going in a circle
            #simulating passing the ball
            #imagine children moving through a pipe
            # exiting from front
            # and reentering through the rear
            # until the number of exits = limit
            # eliminate the kid who is at the front end
            #dequeing and enqueing
            #dequeue
            name = sim_queue.dequeue()

            #enque it back as we have to go more rounds
            sim_queue.enqueue(name)

        #one round complete
        #deque that person
        sim_queue.dequeue()

    print(sim_queue.items)

    return sim_queue.dequeue()
def is_minimally_connected(graph: GraphUndirectedUnweighted) -> bool:
    graph_copy = GraphUndirectedUnweighted()
    graph_copy.connections, graph_copy.nodes = deepcopy(graph.connections), graph.nodes
    # getting a random node for starting the traversal
    for node in graph.connections:
        start = node
        break
    # running bfs and checking if a node is visited more than once
    # (redundant edges present => not a minimally connected graph)
    visited = set([start])
    queue = Queue()
    queue.enqueue(start)
    while not queue.is_empty():
        node = queue.dequeue()
        for neighbour in graph_copy.connections[node]:
            graph_copy.connections[neighbour].remove(node)
            queue.enqueue(neighbour)
            if neighbour in visited:
                return False
            visited.add(neighbour)
    return True
Ejemplo n.º 8
0
def make_depth_lists(tree):
    """
    Space: O(n)
    Time: O(n)
    :param tree:
    :return:
    """
    if tree.rchild is None and tree.lchild is None:
        return None

    q = Queue()
    level = 0
    q.enqueue((tree, level))
    depth_lists = dict()

    while not q.is_empty():
        node, level = q.dequeue()
        if depth_lists.get(level) is None:
            depth_lists[level] = Cons(node, None)
        else:
            depth_lists[level] = Cons(node, depth_lists[level])

        if node.rchild is not None:
            q.enqueue((node.rchild, level + 1))

        if node.lchild is not None:
            q.enqueue((node.lchild, level + 1))

    return depth_lists
def bfs_path(graph: GraphUndirectedUnweighted, start: str,
             stop: str) -> List[str]:
    parent_map = {node: None for node in graph.connections}
    # bfs
    queue = Queue()
    seen = set()
    queue.enqueue(start)
    seen.add(start)
    while not queue.is_empty():
        node = queue.dequeue()
        for neighbour in graph.connections[node]:
            if neighbour not in seen:
                parent_map[neighbour] = node
                queue.enqueue(neighbour)
                seen.add(neighbour)
    # generating the path
    path = [stop]
    while parent_map[path[-1]] is not None:
        path.append(parent_map[path[-1]])
        if path[-1] == start:
            break
    return reversed(path)
Ejemplo n.º 10
0
def get_unique_adjacent(string: str) -> Optional[str]:
    length = len(string)
    freq = {}
    if length == 0:
        return string

    for i in range(length):
        if string[i] not in freq:
            freq[string[i]] = 0
        freq[string[i]] += 1

    sorted_freq = sorted(freq.items(), key=lambda x: x[1], reverse=True)
    queue = Queue()
    [queue.enqueue(item) for item in sorted_freq]
    result = ""

    if length % 2 == 0 and sorted_freq[0][1] > length // 2:
        return None
    elif length % 2 == 1 and sorted_freq[0][1] > (length // 2) + 1:
        return None

    while not queue.is_empty():
        if len(queue) == 1:
            elem, freq = queue.peek()
            if freq == 2:
                result = elem + result + elem
                break
            elif freq == 1:
                if result[-1] != elem:
                    result += elem
                else:
                    result = elem + result
                break
            return None

        elem1, freq1 = queue.peek()
        elem2, freq2 = None, None
        if len(queue) > 1:
            elem2, freq2 = queue[1]

        result += elem1 + elem2

        queue[0] = elem1, freq1 - 1
        if len(queue) > 1:
            queue[1] = elem2, freq2 - 1
        if len(queue) > 1 and queue[1][1] == 0:
            queue.dequeue()
        if len(queue) > 0 and queue[0][1] == 0:
            queue.dequeue()
    return result
def get_level_min_sum(tree: BinaryTree) -> int:
    if not tree.root:
        return 0
    # the levels are delimited in the queue by None
    queue = Queue()
    queue.enqueue(tree.root)
    queue.enqueue(None)

    min_level_sum = maxsize
    curr_level_sum = 0
    while not queue.is_empty():
        node = queue.dequeue()
        if node is not None:
            if node.left:
                queue.enqueue(node.left)
            if node.right:
                queue.enqueue(node.right)
            curr_level_sum += node.val
        else:
            min_level_sum = min(curr_level_sum, min_level_sum)
            if len(queue) > 0:
                queue.enqueue(None)
                curr_level_sum = 0
    return min_level_sum
def get_lvl_wise_nodes(tree: BinaryTree) -> List[Node]:
    # using bfs to generate the list of nodes by level
    if not tree.root:
        return []

    queue = Queue()
    queue.enqueue(tree.root)
    ans = []
    while not queue.is_empty():
        node = queue.dequeue()
        if node.left is not None:
            queue.enqueue(node.left)
        if node.right is not None:
            queue.enqueue(node.right)
        ans.append(node.val)
    return ans
from DataStructures.Queue import Queue

# Setup
q = Queue(1)
q.enqueue(2)
q.enqueue(3)

# Test peek
# Should be 1
print(q.peek())

# Test dequeue
# Should be 1
print(q.dequeue())

# Test enqueue
q.enqueue(4)
# Should be 2
print(q.dequeue())
# Should be 3
print(q.dequeue())
# Should be 4
print(q.dequeue())
q.enqueue(5)
# Should be 5
print(q.peek())
Ejemplo n.º 14
0
def simulation(
        num_seconds:int, 
        pages_per_minute:int):
    
    lab_printer = Printer(
            pages_per_minute
            )
    
    print_queue = Queue()
    
    waiting_times = []
    
    #loop through each second
    for current_second in range(num_seconds):
        
        #check if a print task has been created
        ## the code to check that
        ## generates a print task every 180 sec
        if new_print_task():
            
            #print task created
            task = Task(current_second)
            
            #enqueue the atsk
            print_queue.enqueue(task)
        
        #check printer status
        # check if printer is busy
        # Check if print_queue is empty
        if ((not lab_printer.busy()) and 
           (not print_queue.is_empty())):
            
            #printer is idle and tasks in queue
            
            #get next task from qeueue
            next_task = print_queue.dequeue()
            
            #calculate wait time i.e 
            # current_time - task_created_time_stamp
            wait_time = next_task.wait_time(
                    current_second
                    )
            
            #add to list to calculate average wait time
            waiting_times.append(wait_time)
                    
            #start task
            # The printer now does one second of printing
            # also subtracts 1 second 
            # from the time required for that task.
            lab_printer.start_next(next_task)
              
        #manage printer state
        # if no task ..set to idle
        lab_printer.tick()
    
    #calculate average wait time    
    average_wait = \
    sum( waiting_times ) / len(waiting_times)
    print(
            "Average Wait %6.2f secs %3d tasks remaining." \
            %(average_wait, print_queue.size())
            )
Ejemplo n.º 15
0
Created on Aug 23, 2019

@author: siddardha.teegela
'''

from DataStructures.Queue import Queue


def reverseQueue(inputQueue):
    if inputQueue.size() == 0:
        print('Queue is empty')
        return

    size = inputQueue.size()
    while size > 0:
        element = inputQueue.dequeue()
        inputQueue.enqueue(element)
        size -= 1


if __name__ == '__main__':
    q = Queue()
    q.enqueue(1)
    q.enqueue(2)
    q.enqueue(3)
    q.enqueue(4)
    q.enqueue(5)

    reverseQueue(q)
    print('After queue reverse')
    q.print()
Ejemplo n.º 16
0
 def queueChars(self, item):
     q = Queue()
     for char in list(item):
         q.enqueue(char)
     return q