sess = tf.Session(config=session_conf) with sess.as_default(): checkpoint_file = FLAGS.checkpoint_file saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) saver.restore(sess, checkpoint_file) input_x = graph.get_operation_by_name('input_x').outputs[0] dropout_keep_prob = graph.get_operation_by_name( 'dropout_keep_prob').outputs[0] predictions = graph.get_operation_by_name('predictions').outputs[0] batches = batch_iter(list(x_test), FLAGS.batch_size, shuffle=False) for x_batch in batches: cand_predictions = sess.run(predictions, { input_x: x_batch, dropout_keep_prob: 1.0 }) all_predictions = np.concatenate( (all_predictions, cand_predictions)) print y_test[0] print all_predictions[0] print type(all_predictions)
def dev_step(x_batch, y_batch): feed_dict = { rnn.input_x: x_batch, rnn.input_y: y_batch, rnn.dropout_keep_prob: 1.0 } step, loss, accuracy = sess.run( [rnn.global_step, rnn.loss_val, rnn.accuracy], feed_dict) time_str = datetime.datetime.now().isoformat() print "dev_result: {}:step {}, loss {:g}, acc {:g}".format( time_str, step, loss, accuracy) for epoch_idx in range(FLAGS.num_epochs): batches = batch_iter(list(zip(x_train, y_train)), FLAGS.batch_size) for batch in batches: x_batch, y_batch = zip(*batch) train_step(x_batch, y_batch) if epoch_idx % FLAGS.validate_every == 0: print '\n' dev_step(x_dev, y_dev) path = saver.save(sess, checkpoints_prefix, global_step=epoch_idx) print("Saved model checkpoint to {}\n".format(path))