Ejemplo n.º 1
0
    def __init__(self, val, der=1):
        """
        Returns a Vector variable with user defined value and derivative

        INPUTS
        =======
        val: list of floats, compulsory
            Value of the Vector variable
        der: float, optional, default value is 1
            Derivative of the Vector variable/function of a variable

        RETURNS
        ========
        Vector class instance

        NOTES
        =====
        PRE:
            - val and der have numeric type and val must be a list
            - two or fewer inputs
        POST:
            returns a Vector class instance with value = val and derivative = der
        """
        self._val = np.array(val)
        self._jacobian = der * np.eye(len(val))
        scalars = [None] * len(val)
        for i in range(len(val)):
            scalars[i] = Scalar(val[i])

            # Initialize the jacobians
        for var in scalars:
            var.init_jacobian(scalars)
        self._scalars = scalars
Ejemplo n.º 2
0
    def arccosh(x):
        """
        Returns a constant, Scalar, or Vector object that is the arccosh of the user specified value.

        INPUTS
        =======
        val: real valued numeric type

        RETURNS
        =======
        Scalar or Vector class instance

        NOTES
        ======
        If the input value is a constant, each operator method returns a constant with the operation
        applied. If the input value is a Scalar object, the operator method applies the operator to the value
        and propagates the derivative through the chain rule, wrapping the results in a new Scalar object. If the
        input value is a vector, the operator method updates the value of the element, and the jacobian of the vector,
        returning a new vector object with these properties.
        """
        try:
            j = x._jacobian
        except AttributeError:
            return np.arccosh(x)  # If x is a constant
        else:
            try:
                k = j.keys()  # To tell whether x is a scalar or vector
            except AttributeError:
                new = Vector(np.arccosh(x._val),
                             x._jacobian)  # If x is a vector variable
                try:
                    dict_self = x._dict.copy(
                    )  # If x is a complex vector variable, it will update the original dictionary
                    for key in dict_self.keys():
                        dict_self[key] = dict_self[key] * -np.arccosh(
                            x._val) * np.tanh(x._val)
                    new._dict = dict_self
                    return new
                except AttributeError:
                    derivative = Counter()
                    derivative[x] = x._jacobian * -np.arccosh(
                        x._val) * np.tanh(x._val)
                    new._dict = derivative  # If x is not a complex vector variable, it will add an attribute to the new variable
                    return new
            else:
                jacobian = {
                    k: x.partial(k) * -np.arccosh(x._val) * np.tanh(x._val)
                    for k in x._jacobian.keys()
                }
                return Scalar(np.arccosh(x._val), jacobian)
Ejemplo n.º 3
0
    def create_scalar(vals):
        """
        Return Scalar object(s) with user defined value(s).

        INPUTS
        =======
        vals: a list of numeric types or a single numeric type value

        RETURNS
        =======
        scalar: if vals is a single numeric type, scalar, a Scalar instance
                with user defined value, is returned as a single object
        scalars: if vals is a list of numeric types, scalars, a list of Scalar
                 objects with values corresponding to vals, is returned as a
                 list

        NOTES
        ======
        This method initializes all Scalar objects desired by the user with
        user defined value.  Before returning these Scalar objects, this method
        solidifies the variable 'universe' by seeding the jacobians of each
        of the Scalar objects with appropriate values with respect to all
        Scalars requested by the user.
        """
        try:
            scalars = [None] * len(vals)
            for i in range(len(vals)):
                scalars[i] = Scalar(vals[i])

            # Initialize the jacobians
            for var in scalars:
                var.init_jacobian(scalars)
            return scalars
        except TypeError:
            scalar = Scalar(vals)
            scalar.init_jacobian([scalar])
            return scalar
Ejemplo n.º 4
0
from Dotua.nodes.scalar import Scalar
import numpy as np
'''
Initialize local variables for testing. Since these tests need to be
independent of AutoDiff, we will simulate the initalization process by calling
init_jacobian once the entire 'universe' of variables has been defined
'''
# Define scalar objects
vars = x, y = Scalar(1), Scalar(2)
a, b = x.eval(), y.eval()
for var in vars:
    var.init_jacobian(vars)

# Define functions of the scalar objects
f_1 = x + y
f_2 = y + x
f_3 = x - y
f_4 = y - x
f_5 = x * y
f_6 = y * x
f_7 = x / y
f_8 = y / x

# Slightly more complicated functions
g_1 = 10 * x + y / 2 + 1000
g_2 = -2 * x * x - 1 / y

# Exponential functions
h_1 = x**2
h_2 = 2**x
h_3 = x**y