Ejemplo n.º 1
0
def read_ECMWF(date):
    """ Script reading the ECMWF data.
    Not a generator as this is synchronized with the 1h part slice.
    The data are assumed valid over the 1h period that follows the timestamp.
    This is quite OK for UDR as this quantity is defined as a mean/accumuation over
    this one-hour period.
    Cloud-cover is from analysis, therefore as an instantaneous map, but varies less rapidly 
    than the UDR. """
    dat = ECMWF('STC',date)
    dat._get_var('T')
    dat.attr['dlo'] = (dat.attr['lons'][-1] - dat.attr['lons'][0]) / (dat.nlon-1)
    dat.attr['dla'] = (dat.attr['lats'][-1] - dat.attr['lats'][0]) / (dat.nlat-1) 
    if dat.attr['Lo1']>dat.attr['Lo2']:
        dat.attr['Lo1'] = dat.attr['Lo1']-360.
    #@@ test
#    print('LoLa ',dat.attr['Lo1'],dat.attr['La1'],dat.attr['dlo'],dat.attr['dla'],\
#          dat.attr['levs'][0],len(dat.attr['levs']))
    #@@ end test
    dat._get_var('UDR')
    #dat._get_var('CC')
    dat._mkp()
    dat._mkrho()
    dat.var['UDR'] /= dat.var['RHO']
    dat.close()
    return dat
Ejemplo n.º 2
0
def Pinterpol(date):
    """ Read the ERA5 data and interpolate to the pressure levels. """
    dat = ECMWF('FULL-EA', date, exp=['VOZ', 'QN'])
    dat._get_T()
    dat._get_var('O3')
    dat._get_var('Q')
    dat.close()
    dat._mkp()
    dat._mkz()
    dat2 = dat.shift2west(-20)
    dat3 = dat2.extract(lonRange=[-10, 160], latRange=[0, 50], varss='All')
    dat3._WMO()
    dat4 = dat3.interpolP(pressPa, varList=['Z', 'T', 'Q', 'O3'])
    dat4.d2d = dat3.d2d
    return (dat4)
Ejemplo n.º 3
0
        dats[i] = datr.interpolPT(pts,
                                  varList=varList,
                                  latRange=(20, 50),
                                  lonRange=(-30, 90))
    elif date >= datetime(2017, 9, 1, 0):
        dats[i] = dat.interpolPT(pts,
                                 varList=varList,
                                 latRange=(30, 60),
                                 lonRange=(0, 120))
    else:
        datr = dat.shift2west(-180)
        dats[i] = datr.interpolPT(pts,
                                  varList=varList,
                                  latRange=(40, 70),
                                  lonRange=(-40, 80))
    dat.close()
    date += timedelta(hours=6)
    i += 1

#%%
if predates:
    outbak = 'ERA5-extract-A-PT5-pre.pkl'
    outfile = 'ERA5-extract-A-PT5-new.pkl'
    with gzip.open(outbak, 'wb') as f:
        pickle.dump(dats, f)
    with gzip.open('ERA5-extract-A-PT5.pkl', 'rb') as f:
        dats2 = pickle.load(f)
    for i2 in range(len(dats2)):
        dats[i + i2] = dats2[i2]
elif postdates:
    outfile = 'ERA5-extract-A-PT5-post.pkl'
Ejemplo n.º 4
0
if args.month2 is not None: month2 = args.month2
if args.day1 is not None: day1 = args.day1
if args.day2 is not None: day2 = args.day2
if args.hour1 is not None: hour1 = args.hour1
if args.hour2 is not None: hour2 = args.hour2

date = datetime(year, month1, day1, hour1)

while date < datetime(year, month2, day2, hour2):
    print('processing ', date)
    outfile = date.strftime('TPP%y%m%d%H.hdf5')
    fullname = os.path.join(maindir, date.strftime('%Y/%m'), outfile)
    fdd = ECMWF('FULL-EA', date)
    fdd._get_T()
    fdd._mkp()
    fdd.close()
    fde = fdd.shift2west(-20)
    fdf = fde.extract(lonRange=[-10, 160], latRange=[0, 50], varss='All')
    fdf._CPT()
    fdf._WMO()
    tpp = {}
    tpp['Twmo'] = fdf.d2d['Twmo']
    tpp['pwmo'] = fdf.d2d['pwmo']
    tpp['Tcold'] = fdf.d2d['Tcold']
    tpp['pcold'] = fdf.d2d['pcold']
    tpp['nlon'] = fdf.nlon
    tpp['nlat'] = fdf.nlat
    tpp['lats'] = fdf.attr['lats']
    tpp['lons'] = fdf.attr['lons']
    tpp['date'] = fdd.date
    fl.save(fullname, tpp, compression='zlib')
Ejemplo n.º 5
0
        data, theta_level)  # First interpolation to the theta level
    delta_pf = ENint.total_seconds()
    numpart = 0

    # loop on the EN time
    while date_p >= date_beg:
        T_f = T_p.copy()
        P_f = P_p.copy()
        if not quiet:
            print('load new EN file  ', date_p)
        data = ECMWF('FULL-EA', date_p)
        data._get_var('T')
        data._mkp()
        data._mkthet()
        T_p, P_p = interp3d_thet(data, theta_level)
        data.close()

        while date_current >= date_p:
            # interpol the temperature in time
            #print('date  ',date_current)
            delta_f = date_f - date_current
            delta_p = date_current - date_p
            T_current = (delta_p.total_seconds() / delta_pf) * T_f + (
                delta_f.total_seconds() / delta_pf) * T_p
            P_current = (delta_p.total_seconds() / delta_pf) * P_f + (
                delta_f.total_seconds() / delta_pf) * P_p
            # fill part0
            ir_start = -int((date_end - date_current).total_seconds())
            idx1 = numpart
            numpart += bloc_size
            part0['x'] = np.append(part0['x'], xg)
Ejemplo n.º 6
0
            dtt = (mean_date-date1).total_seconds()/10800
            # test whether the selected part of the orbit is totally in the interval
            enter_date = ref_date + timedelta(seconds=data['time'][0])
            exit_date = ref_date + timedelta(seconds=data['time'][-1])            
            if enter_date < date1:
                print('beginning of orbit out by',date1-enter_date,dtt)
            if  exit_date > date2:
                print('beginning of orbit out by',exit_date-date2,dtt)

            # get ECMWF data for the orbit and generate a curtain over the retained segment
            # read data for first bracketting date
            dat1 = ECMWF('FULL-EI',date1)
            dat1._get_T()
            dat1._mkp()
            dat1._mkz()
            dat1.close()
            # generate a curtain along the track for first date
            sect1 = dat1.interpol_orbit(data['longitude'],data['latitude'],varList=['P','T','Z'])
            del dat1
            # read data for second bracketting date
            dat2 = ECMWF('FULL-EI',date2)
            dat2._get_T()
            dat2._mkp()
            dat2._mkz()
            dat2.close()
            # generate a curtain along the track for scond date
            sect2 = dat2.interpol_orbit(data['longitude'],data['latitude'],varList=['P','T','Z'])
            del dat2
            sect = curtain()
            #sect.x = sect1.x
            #sect.y = sect1.y
Ejemplo n.º 7
0
part0['y'] = np.empty(0,dtype=float)
part0['t'] = np.empty(0,dtype=float)
part0['p'] = np.empty(0,dtype=float)
part0['idx_back'] = np.empty(0,dtype=int)
numpart = 0

# Loop on the values of theta
for targetTheta in [theta-dTheta, theta, theta+dTheta]:
    # get the first time
    date1 = date + timedelta(hours=int(begSeq/3600))
    predat = ECMWF('STC',date1)
    predat._get_T()
    predat._mkp()
    predat._mkthet()
    (fT1,fP1) = interp3d_thet(predat,targetTheta)
    predat.close()
    
    #for n in range(nInt):
    # finds the boundary
    id1 = np.where(utc == begSeq)[0][0]
    id2 = np.where(utc == endSeq)[0][0]
    # get lat, lon and release time
    yy = data.var['Lat'][id1:id2+1]
    xx = data.var['Long'][id1:id2+1] 
    ir_start = utc[id1:id2+1] - 86400
    ir_start  = ir_start.astype(np.int)
    #weigthing factor
    w2 = (utc[id1:id2+1] % 3600) / 3600
    # Bloc_size
    block_size = len(xx)*nsel