Ejemplo n.º 1
0
def test_two_variables():
    ad = AD(np.array([2, 2]), np.array([1, 1]))
    f1 = lambda x, y: Var.log(x)**Var.sin(y)
    assert AD.auto_diff(self=ad, func=f1) == Var(
        pytest.approx(0.7165772257590739),
        np.array([pytest.approx(0.47001694),
                  pytest.approx(0.10929465)]))
Ejemplo n.º 2
0
def test_jac_matrix():
    f1 = lambda x, y: Var.log(x)**Var.sin(y)
    f2 = lambda x, y: Var.sqrt(x) / y
    ad = AD(np.array([4.12, 5.13]), np.array([1, 1]))
    assert np.array_equal(
        ad.jac_matrix([f1, f2]),
        np.array([[pytest.approx(-0.11403015),
                   pytest.approx(0.10263124)],
                  [pytest.approx(0.048018),
                   pytest.approx(-0.07712832)]]))
Ejemplo n.º 3
0
from EasyDiff.ad import AD
from EasyDiff.var import Var
from EasyDiff.rev_var import Rev_Var
from EasyDiff.ad import AD_Mode
import numpy as np

# test forward mode.
# give it a function of your choice
func = lambda x, y: Var.log(x)**Var.sin(y)

# give the initial values to take the derivatives at
ad = AD(vals=np.array([2, 2]), ders=np.array([1, 1]), mode=AD_Mode.FORWARD)

# calculate and print the derivatives
print("Var.log(x) ** Var.sin(y): {}".format(vars(ad.auto_diff(func))))

# test reverse mode.
func = lambda x, y: Rev_Var.log(x)**Rev_Var.sin(y)
ad = AD(vals=np.array([2, 2]), ders=np.array([1, 1]), mode=AD_Mode.REVERSE)
print("Rev_Var.log(x) ** Rev_Var.sin(y): {}".format(vars(ad.auto_diff(func))))
Ejemplo n.º 4
0
def test_two_variables():
	ad = AD(np.array([2, 2]), np.array([1, 1]), AD_Mode.REVERSE)
	f1 = lambda x, y: Rev_Var.log(x) ** Rev_Var.sin(y)
	assert ad.vars[0].value == 2
	assert ad.vars[1].value == 2
	assert AD.auto_diff(self=ad,func=f1) == Var(pytest.approx(0.7165772257590739),np.array([pytest.approx(0.47001694),pytest.approx(0.10929465)]))
Ejemplo n.º 5
0
def test_single_variable():
	ad = AD(np.array([2]), np.array([1]),AD_Mode.REVERSE)
	f1 = lambda x: Rev_Var.log(x) ** 2
	assert AD.auto_diff(self=ad,func=f1) == Var(pytest.approx(0.4804530139182014),np.array([pytest.approx(0.69314718)]))