Ejemplo n.º 1
0
    def __init__(self, deepOptionChain: DeepOptionChain, volatilityBack=260):
        self.optionChain = deepOptionChain.getOptionChain()
        self.deepChain = deepOptionChain.getDeepOptionChain()
        self.chainWeights = ChainWeights(self.optionChain)

        if deepOptionChain.computeIV:
            self.smile = self.deepChain.smile
        else:
            self.smile = None

        ticker = self.optionChain.getTicker()
        self.history = ticker.getHistory(
            end=self.optionChain.getChainDate()).tail(volatilityBack)
    def __init__(self, deepOptionChain: DeepOptionChain, weights):
        """
        weightsMode:
        * EW -> equally weighted (default);
        * ATM
        * OI -> open interest;
        """
        self.deepOptionChain = deepOptionChain
        self.deepChain = deepOptionChain.getDeepOptionChain()
        self.optionChain = deepOptionChain.getOptionChain()
        self.data = self.deepChain

        self.avaiableIV = deepOptionChain.computeIV
        self.weights = weights
Ejemplo n.º 3
0
    def computeDeepOptionSurface(self):
        deep_data = {}
        for expiration in tqdm(self.optionSurface.getExpirations(),
                               desc='Compute IV surface',
                               disable=not self.progressBar):
            chain = self.getOptionSurface().getChainByDate(expiration)
            deep_data[expiration] = DeepOptionChain(chain,
                                                    computeIV=self.computeIV,
                                                    computeBSM=self.computeBSM,
                                                    progressBar=False)

        return deep_data
Ejemplo n.º 4
0
import pandas as pd

from EcoFin.dataDownload.optionsManager import OptionManager
from EcoFin.dataDownload.ticker import Ticker
from EcoFin.options.deepOptionChain import DeepOptionChain

# -------------------------[Set-up]-------------------------
ticker = Ticker('MSFT')
optionManager = OptionManager(ticker)
exp = optionManager.getExpirationByMaturity(30, method='greater')
optionChain = optionManager.getOptionChain(exp=exp)
# ----------------------------------------------------------

ticker_info = ticker.getInfo()
forwardPrice = optionChain.getForwardPrice()

deepOptionChain = DeepOptionChain(optionChain, computeIV=False)
data = deepOptionChain.getDeepOptionChain()

# ----------------------[EXPORT BLOCK]--------------------------------
path = '../Export/[{}]'.format(ticker.ticker)
if not os.path.exists(path):
    os.makedirs(path)
with pd.ExcelWriter('{}/deepOptionChain_[{}].xlsx'.format(path,
                                                          exp)) as writer:
    data.to_excel(writer, sheet_name='Chain', index=False)

print('\nFile saved!')
# ----------------------[EXPORT BLOCK]--------------------------------
Ejemplo n.º 5
0
from EcoFin.dataDownload.optionsManager import OptionManager
from EcoFin.dataDownload.ticker import Ticker
from EcoFin.options.deepOptionChain import DeepOptionChain
from EcoFin.stat.utils import weightedAvg, weightedStd

# -------------------------[Set-up]-------------------------
ticker = Ticker('MSFT')
optionManager = OptionManager(ticker, now=1492646400)
exp = optionManager.getExpirationByMaturity(30, method='greater')
optionChain = optionManager.getOptionChain(exp=exp)
# ----------------------------------------------------------

ticker_info = ticker.getInfo()
forwardPrice = optionChain.getForwardPrice()

deepOptionChain = DeepOptionChain(optionChain)
data = deepOptionChain.getDeepOptionChain()

data['weights'] = data.loc[:, ['openInterest_call', 'openInterest_put']].sum(axis=1) / \
                  np.nansum(data.loc[:, ['openInterest_call', 'openInterest_put']].to_numpy())

fig, axs = plt.subplots(2,
                        gridspec_kw={'height_ratios': [3, 2]},
                        figsize=(10, 5),
                        sharex=True)
"""
# chart 1
axs[0].plot(data.strike, data['TheoPrice_call'], linewidth=3, label='Theoretical call', color='green')
axs[0].plot(data.strike, data['TheoPrice_put'], linewidth=3, label='Theoretical put', color='red')
axs[0].plot(data.strike, data.avgPrice_call, linewidth=3, linestyle="dashed", label='$Call_{AVG}$')
axs[0].plot(data.strike, data.avgPrice_put, linewidth=3, linestyle="dashed", label='$Put_{AVG}$')
Ejemplo n.º 6
0
# Custom
increment = 86400  # 1 day
date1 = 1483228800  # Sunday 01 January 2017
date2 = date1 + increment * 365 * 3
# ----------------------------------------------------------

ticker_info = ticker.getInfo()

output = []
for now in tqdm(range(date1, date2, increment),
                desc='Compute history'):  # Compute day by day
    if optionManager.setNow(now) is not False:
        exp = optionManager.getExpirationByMaturity(5, method='greater')
        optionChain = optionManager.getOptionChain(exp=exp)
        deepOptionChain = DeepOptionChain(optionChain,
                                          computeIV=True,
                                          progressBar=False)

        VIX = EquityVIX(deepOptionChain)

        summary = {
            'Date': unixtimestamp_to_date(optionChain.getChainDate()),
            'SpotPrice': optionChain.getSpotPrice(),
            'CBOE_VIX': VIX.getCBOEVIX(),
            'Mean': VIX.getMeanVIX().value,
            'Beta': VIX.getBetaVIX().value,
            'ATM': VIX.getATMVIX().value,
            'OI': VIX.getOpenInterestVIX().value
        }

        if len(output) == 0:
Ejemplo n.º 7
0
from EcoFin.dataDownload.optionsManager import OptionManager
from EcoFin.dataDownload.ticker import Ticker
from EcoFin.options.chainWeights import ChainWeights
from EcoFin.options.deepOptionChain import DeepOptionChain
from EcoFin.options.optionChainSynopsis import OptionChainSinopsys

# -------------------------[Set-up]-------------------------
ticker = Ticker('MSFT')
optionManager = OptionManager(ticker)
exp = optionManager.getExpirationByMaturity(30, method='greater')
optionChain = optionManager.getOptionChain(exp=exp)
# ----------------------------------------------------------

ticker_info = ticker.getInfo()

deepOptChain = DeepOptionChain(optionChain, True)
chainWeights = ChainWeights(optionChain)

for mode, weights in {
        'EW': chainWeights.computeEquallyWeights(),
        'Beta': chainWeights.computeBetaWeights(),
        'ATM': chainWeights.computeATMWeights(),
        'OI': chainWeights.computeOpenInterestsWeights(),
        'Moneyness': chainWeights.computeMoneynessWeights()
}.items():
    print('----[{}]----'.format(mode))
    synopsis = OptionChainSinopsys(deepOptChain, weights=weights)

    OPS = synopsis.computeOptionPriceSpread()
    print('OPS:\n • {}\n • {}'.format(OPS.mean, OPS.std))
Ejemplo n.º 8
0
def execute(tick: str):
    ticker = Ticker(tick)
    optionManager = OptionManager(ticker)

    output = pd.DataFrame
    for now in range(date1, date2, increment):  # Compute day by day
        try:
            # Exclude bad results and weekends
            if optionManager.setNow(now) is not False and datetime.fromtimestamp(now).weekday() not in [5, 6]:
                exp = optionManager.getExpirationByMaturity(maturity_min, method='greater')
                optionChain = optionManager.getOptionChain(exp=exp)
                deepOptionChain = DeepOptionChain(optionChain, computeIV=computeIV, progressBar=False)

                summary = {'Date': unixtimestamp_to_date(optionChain.getChainDate()),
                           'Exp': unixtimestamp_to_date(optionChain.getChainExpiration()),
                           'Maturity': optionChain.getTimeToMaturity().days,
                           'ForwardPrice': optionChain.getForwardPrice(),
                           'SpotPrice': optionChain.getSpotPrice(),
                           }

                # compute signals
                chainWeights = ChainWeights(optionChain)
                for mode, weights in {'EW': chainWeights.computeEquallyWeights(),
                                      'Beta': chainWeights.computeBetaWeights(),
                                      'ATM': chainWeights.computeATMWeights(),
                                      'OI': chainWeights.computeOpenInterestsWeights(),
                                      'Moneyness': chainWeights.computeMoneynessWeights()}.items():
                    synopsis = OptionChainSinopsys(deepOptionChain, weights=weights)

                    OPS = synopsis.computeOptionPriceSpread()
                    IVS = synopsis.computeImpliedVolatilitySpread()
                    NAP = synopsis.computeNoArbitragePrice()
                    OIR = synopsis.computeOpenInterestRatio()

                    summary['OPS_[{}]'.format(mode)] = OPS.mean
                    summary['IVS_[{}]'.format(mode)] = IVS.mean
                    summary['NAP_[{}]'.format(mode)] = NAP.value
                    summary['NAP_ret_[{}]'.format(mode)] = NAP.ret
                    summary['OIR_[{}]'.format(mode)] = OIR.mean

                PCD = synopsis.computePutCallDelta()
                summary['PCD'] = PCD

                # Compute volatility metrics
                VIX = EquityVIX(deepOptionChain)
                summary['VIX_[hist]'] = VIX.getHistoricalVolatility()
                summary['VIX_[mean]'] = VIX.getMeanVIX().value
                summary['VIX_[beta]'] = VIX.getBetaVIX().value
                summary['VIX_[CBOE]'] = VIX.getCBOEVIX()

                if output.empty:
                    output = pd.DataFrame(columns=list(summary.keys()), index=[])

                output = output.append(summary, ignore_index=True)
        except Exception as e:
            logs.append('Error with [{}] - [{}]: {}'.format(ticker.ticker, now, e))
            pass

    # ----------------------[EXPORT BLOCK]--------------------------------
    path = '../Export/BackTest/{}'.format(ticker.ticker)
    if not os.path.exists(path):
        os.makedirs(path)
    try:
        with pd.ExcelWriter('{}/backTest_[{}].xlsx'.format(path, maturity_min)) as writer:
            output.to_excel(writer, sheet_name='Results', index=False)
    except:
        pass
Ejemplo n.º 9
0
from EcoFin.dataDownload.optionsManager import OptionManager
from EcoFin.dataDownload.ticker import Ticker
from EcoFin.options.deepOptionChain import DeepOptionChain
from EcoFin.options.equityVIX import EquityVIX

# -------------------------[Set-up]-------------------------
ticker = Ticker('MSFT')
optionManager = OptionManager(ticker, now=None)

i = 0  # <- Time To Maturity curve
exp = optionManager.getExpirations()[i]

optionChain = optionManager.getOptionChain(exp=exp)
# ----------------------------------------------------------

deepOptionChain = DeepOptionChain(optionChain)
equityVIX = EquityVIX(deepOptionChain)

VIX = {
    'MeanVIX': equityVIX.getMeanVIX().value,
    'BetaVIX': equityVIX.getBetaVIX().value,
    'CBOEVIX': equityVIX.getCBOEVIX(),
    'Historical': equityVIX.getHistoricalVolatility(),
    'VE': equityVIX.getVolatilityExcess()
}

print('\n---------------------------')
print(' • Mean VIX: {}'.format(VIX['MeanVIX']))
print(' • Beta VIX: {}'.format(VIX['BetaVIX']))
print(' • CBOE VIX: {}'.format(VIX['CBOEVIX']))
print(' • Historical volatility: {}'.format(VIX['Historical']))
This file is part of the EcoFin-Library (https://github.com/LucaCamerani/EcoFin-Library),
and is released under the "BSD Open Source License".
"""

import pandas as pd

from EcoFin.dataDownload.optionsManager import OptionManager
from EcoFin.dataDownload.ticker import Ticker
from EcoFin.options.deepOptionChain import DeepOptionChain

# -------------------------[Set-up]-------------------------
ticker = Ticker('MSFT')
optionManager = OptionManager(ticker, now=None)

i = 0  # <- Time To Maturity curve
exp = optionManager.getExpirations()[i]

optionChain = optionManager.getOptionChain(exp=exp)
# ----------------------------------------------------------

chain = optionChain.getChain()
deepChain = DeepOptionChain(optionChain).getDeepOptionChain()

path = '../Export/[{}]_deepOptionChain.xlsx'.format(ticker.ticker)
with pd.ExcelWriter(path) as writer:
    chain.full.to_excel(writer, sheet_name='Chain')
    deepChain.to_excel(writer, sheet_name='Deep Chain')

print('file saved! ({})'.format(path))