Ejemplo n.º 1
0
def collect_data():
    robot = Robot()
    cubusm = CubesManager()
    for i in range(MAX_PICTURE_NUM):
        cubusm.reset_cube(rand=True)
        Box_position = cubusm.read_cube_pose("demo_cube")
        # print "cube position:", str(Box_position)
        joint, view = robot.get_state()
        rgb, dep = robot.get_rgb_dep()
        # b, g, r = cv2.split(rgb)
        # print view[0,0,0]
        # print dep
        # rgb = cv2.merge([r, g, b])
        # print dep
        # plt.imshow(dep)
        # plt.show()
        rgb = cv2.resize(rgb, (224, 224))
        dep = cv2.resize(dep, (224, 224))
        # print dep
        cv2.imwrite(
            "/home/ljt/Desktop/images/rgb/" + str(Box_position) + ".png", rgb)
        # cv2.imwrite("/home/ljt/Desktop/ws/src/fetch_moveit_config/images/dep/" + str(Box_position) + ".png", dep)
        # a = np.array(rgb).shape
        # print a
        # print "camera image shape:", view.shape
        np.save("/home/ljt/Desktop/images/dep/" + str(Box_position), dep)
Ejemplo n.º 2
0
    # start training
    for i in range(MAX_EPISODES):

        cubm.reset_cube(rand=True)
        Box_position = cubm.read_cube_pose("demo_cube")
        print "cube position:", Box_position
        robot.Box_position = copy.deepcopy(Box_position)
        now_position = robot.gripper.get_current_pose(
            "gripper_link").pose.position
        now_dis = math.sqrt(
            math.pow(now_position.x - robot.Box_position[0], 2) +
            math.pow(now_position.y - robot.Box_position[1], 2) +
            math.pow(now_position.z - robot.Box_position[2], 2))
        robot.reward = -10 * now_dis
        robot.reset()
        s = robot.get_state()
        ep_r = 0.  # reward of each epoch
        for j in range(MAX_EP_STEPS):

            a = rl.choose_action(s)

            s_, r, done = robot.step(a)
            number += 1
            print "-------the %i step-------" % number
            rl.store_transition(s, a, r, s_)
            # print s_[0]
            ep_r += r
            if rl.memory_full:
                # start to learn once has fulfilled the memory
                rl.learn()
            # rl.learn()