Ejemplo n.º 1
0
'''
This is just an extension of Problem 9 of project euler.
I just initiated the value, then took a squareroot( since the values req. are 3)
Then did a gcd b/w the 2 values to find the later value. 
Then did a sum to get the Length. Then added them and printed them out.
'''


from Euler import gcd, sqrt
 
L = 1500000
sqrt_L = int(sqrt(L))
lengths = [0]*L #initating the arrays.
for i in range(1, sqrt_L, 2):
  for j in range(2, sqrt_L- i , 2):
      if gcd(i, j) == 1: 
           sum = abs(j*j - i*i) + 2*i*j + i*i + j*j
           for s in range(sum, L, sum):
	           lengths[s]+=1
		    
print lengths.count(1)
Ejemplo n.º 2
0
Assume there are no solutions in positive integers when D is square.

By finding minimal solutions in x for D = {2, 3, 5...}, we obtain the following:

    3^2 – 2×2^2 = 1
    2^2 – 3×1^2 = 1
  > 9^2 – 5×4^2 = 1
    5^2 – 6×2^2 = 1
    8^2 – 7×3^2 = 1

Hence, for D ≤ 6, the largest x is obtained when D=5.

Find the value of D ≤ 1000 in minimal solutions of x
for which the largest value of x is obtained.
'''

from Euler import sqrt, cfrac, convergents

def Pell(D):
    chain = cfrac(D)
    if len(chain)==1: return None
    for f in convergents(chain):
        x = f.numerator
        y = f.denominator
        if x**2 - D*y**2 == 1:
            return x


ans = max([D for D in range(1000) if not sqrt(D).is_integer()], key=Pell)
print(ans)
Ejemplo n.º 3
0
from Euler import prime_sieve, sqrt
L = 10**7
primes = prime_sieve(int(1.30 * sqrt(L)))
del primes[:int(0.6 * len(primes))]


def Eluer70(limit):
    min_q, min_n, i = 2, 0, 0
    for p1 in primes:
        i += 1
        for p2 in primes[i:]:
            if (p1 + p2) % 9 != 1: continue
            n = p1 * p2
            if n > limit: return min_n
            phi = (p1 - 1) * (p2 - 1)
            q = n / float(phi)
            if sorted(str(phi)) == sorted(str(n)):
                if min_q > q:
                    min_q = q
                    min_n = n


print Euler70(L)
Ejemplo n.º 4
0
"""
This is just an extension of Problem 9 of project euler.
I just initiated the value, then took a squareroot( since the values req. are 3)
Then did a gcd b/w the 2 values to find the later value. 
Then did a sum to get the Length. Then added them and printed them out.
"""


from Euler import gcd, sqrt

L = 1500000
sqrt_L = int(sqrt(L))
lengths = [0] * L  # initating the arrays.
for i in range(1, sqrt_L, 2):
    for j in range(2, sqrt_L - i, 2):
        if gcd(i, j) == 1:
            sum = abs(j * j - i * i) + 2 * i * j + i * i + j * j
            for s in range(sum, L, sum):
                lengths[s] += 1

print lengths.count(1)
Ejemplo n.º 5
0
from Euler import prime_sieve, is_perm, sqrt
 
min_q, i, L = 2, 0, 10**7
primes = prime_sieve(1.30*sqrt(L))
ll = 0.7*sqrt(L)
for n in range(len(primes)):
  if primes[n]>ll: break
del primes[:n]
 
for p1 in primes:
  i+=1
  for p2 in primes[i:]:
    n = p1 * p2
    if n > L: break
    phi = (p1-1) * (p2-1)
    q = n / float(phi)
    if is_perm(phi, n) and min_q>q: min_q, min_n = q, n
 
print "Answer to PE70 = ",min_n