def drowPicture(History):
    pyplot.plot(History.history['loss'])
    pyplot.plot(History.history['val_loss'])
    pyplot.plot(History.history['acc'])
    pyplot.plot(History.history['val_acc'])
    pyplot.title('model train vs validation loss')
    pyplot.ylabel('loss')
    pyplot.xlabel('epoch')
    pyplot.legend(['train', 'validation'], loc='upper right')
    pyplot.show()
Ejemplo n.º 2
0
    return (train_metrics, test_metrics)


# 不带约束的
# model = Model(FEATURE_NAMES, hidden_units=10)
# model.build_train_op(0.01, unconstrained=True)
# results = training_helper(model, train_df, test_df, 100, num_iterations_per_loop=44, num_loops=500)
# print("Train Error", results[0]["last_error_rate"])
# print("Train Violation", results[0]["last_max_constraint_violation"])


model = Model(FEATURE_NAMES, hidden_units=10)

model.build_train_op(0.01, unconstrained=False)

results = training_helper(model, train_df, test_df, 100, num_iterations_per_loop=44, num_loops=500)
print("Train Error", results[0]["last_error_rate"])
print("Train Violation", results[0]["last_max_constraint_violation"])


"""画图"""
plt.title("Error Rate vs Epoch")
plt.plot(range(100, len(results[0]["all_errors"])), results[0]["all_errors"][100:], color="green")
plt.xlabel("Epoch")
plt.show()
plt.title("Violation vs Epoch")
plt.plot(range(100, len(results[0]["all_violations"])), results[0]["all_violations"][100:], color="blue")
plt.xlabel("Epoch")
plt.show()
Ejemplo n.º 3
0
from pandas import read_csv
from Example_matplotlib import pyplot
# load dataset
dataset = read_csv('pollution.csv', header=0, index_col=0)
values = dataset.values
# specify columns to plot
groups = [0, 1, 2, 3, 5, 6, 7]
i = 1
# plot each column
pyplot.figure()
for group in groups:
    pyplot.subplot(len(groups), 1, i)
    pyplot.plot(values[:, group])
    pyplot.title(dataset.columns[group], y=0.5, loc='right')
    i += 1
pyplot.show()
Ejemplo n.º 4
0
    return X, y


# define model
model = Sequential()
model.add(LSTM(10, input_shape=(1, 1)))
# activation是激活函数的选择,linear是线性函数
model.add(Dense(1, activation='linear'))
# compile model, loss是损失函数的取值方式,mse是mean_squared_error,代表均方误差,
# optimizer是优化控制器的选择,AdamOptimizer通过使用动量(参数的移动平均数)来改善传统梯度下降
model.compile(loss='mse', optimizer='adam')
# fit model
X, y = get_train()
valX, valY = get_val()
# validation_data是要验证的测试集,shuffle代表是否混淆打乱数据
# 不合格的原因是epochs=100,训练周期不足
history = model.fit(X,
                    y,
                    epochs=100,
                    validation_data=(valX, valY),
                    shuffle=False)
# plot train and validation loss
# loss是训练集的损失函数值,val_loss是验证数据集的损失值
pyplot.plot(history.history['loss'])
pyplot.plot(history.history['val_loss'])
pyplot.title('model train vs validation loss')
pyplot.ylabel('loss')
pyplot.xlabel('epoch')
pyplot.legend(['train', 'validation'], loc='upper right')
pyplot.show()
Ejemplo n.º 5
0
# -*-coding:utf-8-*-
# @Time    : 2019/6/18 0018 10:58
# @Author   :zhuxinquan
# @File    : matplotlib_01.py

import Example_matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap

plt.figure(1)
# map=Basemap()
map = Basemap(llcrnrlon=70, llcrnrlat=3, urcrnrlon=139,
              urcrnrlat=54)  # 画中国 经135度2分30秒-东经73度40分,北纬3度52分-北纬53度33分
map.drawcoastlines()
map.drawcountries()  # 加海岸线
# map.drawrivers(color='blue', linewidth=0.3)  # 加河流
CHN = r"C:\Users\Administrator\Downloads"
map.readshapefile(CHN + r'\gadm36_CHN_shp\gadm36_CHN_1',
                  'states',
                  drawbounds=True)  # 加省界
# map.readshapefile(CHN+r'\gadm36_TWN_shp\gadm36_TWN_1', 'taiwan', drawbounds=True)    # 加台湾

plt.title(r'$World\ Map$', fontsize=24)
plt.show()
Ejemplo n.º 6
0
def pic_map():
    import numpy as np
    import pandas as pd
    import Example_matplotlib.pyplot as plt
    from mpl_toolkits.basemap import Basemap
    from Example_matplotlib.patches import Polygon
    from Example_matplotlib.colors import rgb2hex
    from Example_matplotlib.collections import PatchCollection
    from Example_matplotlib import pylab

    plt.rcParams['font.sans-serif'] = ['KaiTi']  # 指定默认字体
    plt.rcParams['axes.unicode_minus'] = False

    plt.figure(figsize=(20, 10))  # 长和宽
    # m= Basemap(llcrnrlon=73, llcrnrlat=18, urcrnrlon=135, urcrnrlat=55) #指定中国的经纬度
    m = Basemap(llcrnrlon=77,
                llcrnrlat=14,
                urcrnrlon=140,
                urcrnrlat=51,
                projection='lcc',
                lat_1=33,
                lat_2=45,
                lon_0=100)  # ‘lcc'将投影方式设置为兰伯特投影
    # projection='ortho' # 投影方式设置为正投影——类似地球仪

    CHN = r'C:\Users\Administrator\Desktop\MyProject\Test_module\Test_matplotlib\data_base'
    m.readshapefile(CHN + r'\gadm36_CHN_shp\gadm36_CHN_1',
                    'states',
                    drawbounds=True)  # 加省界

    # 读取数据
    df = pd.read_csv('./data_base/data/chnpop.csv')
    df['省名'] = df.省名.str[:2]
    df.set_index('省名', inplace=True)

    # 把每个省的数据映射到colormap上
    statenames = []
    colors = {}
    patches = []
    cmap = plt.cm.YlOrRd  # 国旗色红黄色调
    vmax = 10**8
    vmin = 3 * 10**6

    # 处理地图包里的省名
    for shapedict in m.states_info:
        statename = shapedict['NL_NAME_1']
        p = statename.split('|')
        if len(p) > 1:
            s = p[1]
        else:
            s = p[0]
        s = s[:2]
        if s == '黑龍':
            s = '黑龙'
        statenames.append(s)
        pop = df['人口数'][s]
        colors[s] = cmap(np.sqrt(
            (pop - vmin) / (vmax - vmin)))[:3]  # 根据归一化后的人口数映射颜色
    # exit()
    ax = plt.gca()
    for nshape, seg in enumerate(m.states):
        color = rgb2hex(colors[statenames[nshape]])
        poly = Polygon(seg, facecolor=color, edgecolor=color)
        patches.append(poly)
        ax.add_patch(poly)

    # 图片绘制加上台湾(台湾不可或缺)
    m.readshapefile(CHN + '\gadm36_TWN_shp\gadm36_TWN_1',
                    'taiwan',
                    drawbounds=True)
    for nshape, seg in enumerate(m.taiwan):
        poly = Polygon(seg, facecolor='w')
        patches.append(poly)
        ax.add_patch(poly)

    # 添加colorbar 渐变色legend
    colors1 = [i[1] for i in colors.values()]
    colorVotes = plt.cm.YlOrRd
    p = PatchCollection(patches, cmap=colorVotes)
    p.set_array(np.array(colors1))
    pylab.colorbar(p)

    #4266831.094478747, 1662846.3046657
    lon = 4097273.638675578
    lat = 4008859.232616643
    x, y = m(lon, lat)

    plt.text(x,
             y,
             '国都',
             fontsize=120,
             fontweight='bold',
             ha='left',
             va='bottom',
             color='k')

    m.scatter(x, y, s=200, marker='*', facecolors='r', edgecolors='B')  # 绘制首都

    plt.title(u'祝鑫泉画的World  Map ', fontsize=24)
    plt.savefig("./data_base/result/Chinese_Map1.png", dpi=100)  # 指定分辨率
    plt.show()
Ejemplo n.º 7
0
ax = plt.gca()
for nshape, seg in enumerate(m.states):

    poly = Polygon(seg, facecolor='r')
    ax.add_patch(poly)

# 画上台湾省
m.readshapefile(CHN + '\gadm36_TWN_shp\gadm36_TWN_1',
                'taiwan',
                drawbounds=True)
for nshape, seg in enumerate(m.taiwan):
    poly = Polygon(seg, facecolor='r')
    ax.add_patch(poly)

for shapedict in m.states_info:
    statename = shapedict['NL_NAME_1']
    p = statename.split('|')
    if len(p) > 1:
        s = p[1]
    else:
        s = p[0]
        print(s)

# for shapedict in m.taiwan_info:
#
#     s = shapedict['NAME_CHINE']
#     print(s)

plt.title(r'$祝鑫泉画的World\ Map$', fontsize=24)
plt.show()