Ejemplo n.º 1
0
def main():
    args = parseArgs()
    finetune = args.finetune
    print finetune
    experimentName = 'MyVae_featureGeneration_reconstructionClassification'
    if not os.path.exists(workingDir):
        os.mkdir(workingDir)
    
    experimentDir = os.path.join(workingDir, experimentName)
    if not os.path.exists(experimentDir):
        os.mkdir(experimentDir)
    
    #finetune = False
    mConfig = getConfig(experimentName, finetune)    
    mConfig.workingDir = experimentDir
    
    mData = ChaLearn(mConfig.dataPath, 1)

        
    batchSource_train, batchSource_test, batchSource_valid, segLen_max, sampleDim, frameLabelList_train, frameLabelList_test, frameLabelList_valid = mData.getData_vaeReconstruction(mConfig)
    
    mNet = VaeBlstm_v5(sampleDim, segLen_max, mConfig)
    mNet.train(6000, mConfig.batchSize_train, batchSource_train, mConfig.batchSize_test, batchSource_test)
    
    
    pass
Ejemplo n.º 2
0
def main():
    experimentName = 'StandardVae_featureGeneration_zClassification'
    args = parseArgs()
    finetune = args.finetune
    mConfig = getConfig(experimentName, finetune)

    dataset = 'chalearn'
    experimentDir = os.path.join(workingDir, experimentName)
    if not os.path.exists(experimentDir):
        os.mkdir(experimentDir)
    
    mConfig.workingDir = experimentDir
    
    mData = ChaLearn(mConfig.dataPath, 1)

    batchSource_train, batchSource_test, batchSource_valid, segLen_max, sampleDim, frameLabelList_train, frameLabelList_test, frameLabelList_valid = mData.getData_vaeReconstruction(mConfig)
    
    mNet = VaeBlstm_v14(sampleDim, segLen_max, mConfig)
    mNet.train(6000, mConfig.batchSize_train, batchSource_train, mConfig.batchSize_test, batchSource_test)
Ejemplo n.º 3
0
def main():
    experimentName = 'Blstm_rawJoint'
    mConfig = getConfig(experimentName, 'False')
    
    dataset = 'chalearn'
    #workingDir = '/wrk/hshi/DONOTREMOVE/git/FeatureLearningAndGestureRecognition/ExperimentArchive/New/20180418'
    experimentDir = os.path.join(workingDir, experimentName)
    if not os.path.exists(experimentDir):
        os.mkdir(experimentDir)
    
    mConfig.workingDir = experimentDir

        
    
    mData = ChaLearn(mConfig.dataPath, 1)
    batchSource_train, batchSource_test, batchSource_valid, segLen_max, sampleDim, frameLabelList_train, frameLabelList_test, frameLabelList_valid = mData.getData(mConfig)
    
    mNet = Blstm_v1(sampleDim, segLen_max, mConfig)
    mNet.train(6000, mConfig.batchSize_train, batchSource_train, mConfig.batchSize_test, batchSource_test)
def main():
    experimentName = 'StandardVae_selfReconstruction_rawJoint_zClassification'
    dataset = 'chalearn'
    #workingDir = '/wrk/hshi/DONOTREMOVE/git/FeatureLearningAndGestureRecognition/ExperimentArchive/New/20180418'
    experimentDir = os.path.join(workingDir, experimentName)
    if not os.path.exists(experimentDir):
        os.mkdir(experimentDir)
    args = parseArgs()
    finetune = args.finetune
    mConfig = getConfig(experimentName, finetune)
    
    mConfig.workingDir = experimentDir

    
    mData = ChaLearn(mConfig.dataPath, 1)
    batchSource_train, batchSource_test, batchSource_valid, segLen_max, sampleDim, frameLabelList_train, frameLabelList_test, frameLabelList_valid = mData.getData(mConfig)
    
    mNet = VaeBlstm_v11(sampleDim, segLen_max, mConfig)
    mNet.train(6000, mConfig.batchSize_train, batchSource_train, mConfig.batchSize_test, batchSource_test)