Ejemplo n.º 1
0
 def test_sort_file_by_date(self):
     data = read_expense_file('../Data/VandV/ReadExpenses/Read_File.csv')
     sort_dataframe_by_date(data,
                            '../Data/VandV/ReadExpenses/Read_File.csv',
                            test=True)
     new_data = read_expense_file(
         '../Data/VandV/ReadExpenses/Read_FileTemp.csv')
     date = [
         '2015-01-07', '2015-01-07', '2015-01-07', '2015-01-05',
         '2015-01-05', '2015-01-03', '2015-01-02', '2015-01-02',
         '2015-01-02', '2015-01-02', '2015-01-01'
     ]
     check_debit = [
         342.1, 981.0, 3185.0, 55.0, 75.0, 287.0, 64.8, 75.0, 1280.0, 245.0,
         45.0
     ]
     check_add = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
     savings_debit = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
     savings_add = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 75.0, 0.0, 0.0, 0.0]
     expense = [
         'State Taxes', 'Fed Taxes', 'Paycheck', 'Restaurant', 'Bar',
         'Misc', 'Groceries', 'Transfer', 'Bills', 'Misc', 'Misc'
     ]
     descript = [
         'Income Tax', 'Income Tax', 'Paycheck', 'Dinner', 'None',
         'Oil Change', 'Party', 'Savings Account', 'Rent', 'Camera', 'Jeans'
     ]
     self.assertTrue((date == new_data['Date']).all())
     self.assertTrue((check_debit == new_data['Checking_Debit']).all())
     self.assertTrue((check_add == new_data['Checking_Addition']).all())
     self.assertTrue((savings_debit == new_data['Savings_Debit']).all())
     self.assertTrue((savings_add == new_data['Savings_Addition']).all())
     self.assertTrue((expense == new_data['Expense_Type']).all())
     self.assertTrue((descript == new_data['Description']).all())
     return
Ejemplo n.º 2
0
 def test_exception_handling(self):
     try:
         read_expense_file('../Data/VandV/ReadExpenses/Exception.csv')
         self.assertEqual(1, 0)
     except SystemExit:
         self.assertEqual(1, 1)
     return
Ejemplo n.º 3
0
def draft_daily_log_file(checking_start, savings_start, expense_file_name,
                         log_file, log_end_date):
    """

    :param checking_start: float
                           The starting amount in the checking account \
                           in dollars U.S.
    :param savings_start: float
                          The starting amount in the savings account \
                          in dollars U.S.
    :param expense_file_name: char str
                              The name of the expense file to include the \
                              relative or absolute path link
    :param log_file: char str
                     The name of the log file to include the relative \
                     or absolute path length
    :param log_end_date: char str
                         Today equates to current day, File equates to \
                         the last date in the expense file
    :return: NA

    This function organizes all of the function calls required to create a \
    log file containing the value of the checking and savings account at
    every date between start_date and end_date.
    """
    data = read_expense_file(expense_file_name)
    start_date = pd.to_datetime(min(data['Date'])).date()
    if log_end_date.upper() == 'TODAY':
        end_date = pd.to_datetime('today').date()
    else:
        end_date = max(data['Date']).date()
    daily_account_value(checking_start, savings_start, start_date, end_date,
                        data, log_file)
    return
Ejemplo n.º 4
0
def tabulate_expense(file_name, expense_type, expense_keyword, start_date,
                     end_date):
    data = read_expense_file(file_name)
    value = sum_expense(start_date, end_date, data, expense_keyword,
                        expense_type)
    print('{}{}{}'.format(expense_keyword, ': ', round(value, 2)))
    return
Ejemplo n.º 5
0
def sum_account_values(start_date, end_date, expense_file):
    """

    :param start_date: object
                       Datetime object representing the start date \
                       (Year, Month, Day)
    :param end_date: object
                     Datetime object represernting the end date \
                     (Year, Month, Day)
    :param expense_file: char str
                         The name of the file containing expense information
    :return NA:
    """
    data = read_expense_file(expense_file)
    data = data.set_index("Date")
    grouped = data.ix[end_date:start_date].groupby('Expense_Type').Checking_Debit.sum() + \
              data.ix[end_date:start_date].groupby('Expense_Type').Checking_Addition.sum()
    print('=================================================')
    print('=================================================')
    print('===========      CHECKING ACCOUNT      ==========')
    print('=================================================')
    print('=================================================')
    print(grouped)

    #    grouped = data.ix[end_date:start_date].groupby('Expense_Type').Savings_Debit.sum() + \
    #              data.ix[end_date:start_date].groupby('Expense_Type').Savings_Addition.sum()
    #    print('=================================================')
    #    print('=================================================')
    #    print('===========      SAVINGS ACCOUNT      ===========')
    #    print('=================================================')
    #    print('=================================================')
    #    print(grouped)
    return
Ejemplo n.º 6
0
 def test_daily_log(self):
     check_start = 8500.0
     savings_start = 4000.0
     start_date = pd.to_datetime('2015-1-1').date()
     end_date = pd.to_datetime('2015-1-7').date()
     data = read_expense_file('../Data/VandV/ReadExpenses/Read_File.csv')
     daily_account_value(check_start, savings_start, start_date, end_date,
                         data, '../Data/VandV/ReadExpenses/Log_File.csv')
Ejemplo n.º 7
0
def vendor_expenses(expense_file, start_date, end_date):
    data = read_expense_file(expense_file)
    data = data.set_index("Date")
    grouped = data.ix[end_date:start_date].groupby('Vendor').Checking_Debit.sum() + \
              data.ix[end_date:start_date].groupby('Vendor').Checking_Addition.sum()
    print('=================================================')
    print('=================================================')
    print('===========      CHECKING ACCOUNT      ==========')
    print('=================================================')
    print('=================================================')
    print(grouped)
    return
Ejemplo n.º 8
0
def organize_expense_file_by_date(file_name):
    """

    :param file_name: char str
                      the name of the expense file to include the \
                      relative or absolute path length
    :return: NA

    This function organizes all function calls required to sort and re-write \
    the expense file by date
    """
    data = read_expense_file(file_name)
    sort_dataframe_by_date(data, file_name)
    return
Ejemplo n.º 9
0
def create_histogram_tables(expense_file, histogram_directory, hist_end_date):
    """

    :param expense_file: char str
                         The name of the file containing expense information
    :param histogram_directory: char str
                                The name of the directory containing histogram \
                                information
    :param hist_end_date: char str
                          'Today' or 'File'
    :return NA:
    """
    data = read_expense_file(expense_file)
    start_date = min(data['Date']).date()
    if hist_end_date.upper() == 'TODAY':
        end_date = pd.to_datetime('today').date()
    else:
        end_date = max(data['Date']).date()
    info = []
    bar_expense = histogram_values(start_date, end_date, data, 'Bar')
    groceries_expense = histogram_values(start_date, end_date, data,
                                         'Groceries')
    restaurant_expense = histogram_values(start_date, end_date, data,
                                          'Restaurant')
    misc_expense = histogram_values(start_date, end_date, data, 'Misc')
    gas_expense, date = histogram_values(start_date, end_date, data, 'Gas')
    information = {
        'Date': date,
        'Bar': bar_expense[0],
        'Groceries': groceries_expense[0],
        'Restaurant': restaurant_expense[0],
        'Misc': misc_expense[0],
        'Gas': gas_expense
    }
    df = pd.DataFrame(data=information)
    df = df.set_index("Date")
    df = df[::-1]
    df.to_csv(histogram_directory + 'HistFile.csv')
    return
Ejemplo n.º 10
0
    def test_file_reader(self):
        data = read_expense_file('../Data/VandV/ReadExpenses/Read_File.csv')
        dates = [
            '2015-01-05', '2015-01-01', '2015-01-02', '2015-01-02',
            '2015-01-02', '2015-01-05', '2015-01-03', '2015-01-07',
            '2015-01-07', '2015-01-07', '2015-01-02'
        ]
        check_debit = [
            75.00, 45.00, 245.00, 1280.00, 75.00, 55.00, 287.00, 3185.0,
            981.00, 342.10, 64.80
        ]
        check_add = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
        savings_debit = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
        savings_add = [0.0, 0.0, 0.0, 0.0, 75.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
        exp_type = [
            'Bar', 'Misc', 'Misc', 'Bills', 'Transfer', 'Restaurant', 'Misc',
            'Paycheck', 'Fed Taxes', 'State Taxes', 'Groceries'
        ]
        vendor = [
            'The Pub', 'JC Penny', 'Amazon', 'Apartment Complex',
            'Checking to Savings', 'Olive Garden', 'Car Dealer', 'My Company',
            'Federal Income Tax', 'Utah State Income Tax', 'Fresh Market'
        ]
        descript = [
            'None', 'Jeans', 'Camera', 'Rent', 'Savings Account', 'Dinner',
            'Oil Change', 'Paycheck', 'Income Tax', 'Income Tax', 'Party'
        ]

        self.assertTrue((dates == data['Date']).all())
        self.assertTrue((check_debit == data['Checking_Debit']).all())
        self.assertTrue((check_add == data['Checking_Addition']).all())
        self.assertTrue((savings_debit == data['Savings_Debit']).all())
        self.assertTrue((savings_add == data['Savings_Addition']).all())
        self.assertTrue((exp_type == data['Expense_Type']).all())
        self.assertTrue((vendor == data['Vendor']).all())
        self.assertTrue((descript == data['Description']).all())