Ejemplo n.º 1
0
def cross_check_teams(table: webdriver, bets_db: list) -> (int, tuple):

    preds_list = table.find_elements_by_xpath('.//tr[@class="ng-scope"]')
    teams_web = []
    preds_details = []
    for pred in preds_list:
        match = pred.find_element_by_xpath('.//td[6]').text
        team1, team2 = match.strip().split(' - ')
        quote = float(pred.find_element_by_xpath('.//td[10]').text)
        result = pred.find_element_by_xpath('.//td[11]').text
        label_element = pred.find_element_by_xpath(
            './/div[contains(@class,"ng-scope")]')
        label = label_element.get_attribute('ng-switch-when')

        teams_web.append(team1)
        teams_web.append(team2)
        preds_details.append((team1, team2, quote, result, label))
    teams_web.sort()

    for bet_db_id, _ in bets_db:
        teams_db = dbf.db_select(table='predictions',
                                 columns=['team1', 'team2'],
                                 where=f'bet_id = {bet_db_id}')
        teams_db = [t for i in teams_db for t in i]
        teams_db.sort()
        if teams_web == teams_db:
            return bet_db_id, preds_details
        else:
            continue
    return 0, []
Ejemplo n.º 2
0
def system_simulation(combs_to_play: dict):

    bet_ids = dbf.db_select(table='bets',
                            columns=['id'],
                            where='result != "Unknown" AND euros > 0')

    all_bets = [dbf.db_select(table='predictions',
                              columns=['quote', 'label'],
                              where=f'bet_id = {b_id}') for b_id in bet_ids]
    all_bets = [[(q, 1) if lb == 'WINNING' else (q, 0) for q, lb in bet]
                for bet in all_bets]

    bets_as_system = []
    for i, bet in enumerate(all_bets, 1):

        size = len(bet)
        win = 0
        played = 0
        for j in range(1, size+1):
            if j not in combs_to_play:# and j != size:
                continue
            euros_per_bet = combs_to_play[j]
            comb = list(combinations(bet, j))
            for c in comb:
                win += np.prod(np.array(c).flatten())*euros_per_bet
                played += euros_per_bet

        bets_as_system.append(win - played)


    _, ax = plt.subplots(figsize=(25, 6))
    bal = [sum(bets_as_system[:i]) for i in range(1, len(bets_as_system)+1)]
    plt.plot(bal)

    # Money played and money won for real, day by day
    real_mn_bet, real_mn_won = get_money_and_prizes()

    # Day by day balance
    real_trend = get_trend(euros_played=real_mn_bet, euros_won=real_mn_won)
    plt.plot(real_trend)

    wins = np.array([np.prod(i) for i in all_bets])
    wins = np.argwhere(wins > 0)
    for w in wins:
        plt.axvline(x=w, c='r', alpha=.3)
    return
Ejemplo n.º 3
0
def get_data(use_combo: bool) -> pd.DataFrame:

    cols = ['date', 'team1', 'team2', 'league', 'bet_alias', 'quote', 'label']
    data = dbf.db_select(table='simulations', columns=cols, where='')
    df = pd.DataFrame(data, columns=cols)

    if not use_combo:
        df = df[~df['bet_alias'].str.contains('+', regex=False)].copy()
    df.replace({'WINNING': 1, 'LOSING': 0}, inplace=True)

    return df
Ejemplo n.º 4
0
def get_money_and_prizes():
    money_bet = dbf.db_select(
            table='bets',
            columns=['euros', 'prize', 'result'],
            where='status = "Placed" AND result != "Unknown"')

    euros, prizes, labels = zip(*money_bet)

    euros = np.array(euros)
    labels = [True if i == 'WINNING' else False for i in labels]
    prizes = np.multiply(np.array(prizes), np.array(labels))
    return euros[euros > 0], prizes[euros > 0]
Ejemplo n.º 5
0
def get_bets_as_df() -> pd.DataFrame:

    cols = ['date', 'euros', 'prize', 'result']

    bets = dbf.db_select(table='bets',
                         columns=cols,
                         where='result != "Unknown"')

    bets = pd.DataFrame(bets, columns=cols)
    bets.index += 1
    bets['date'] = pd.to_datetime(bets['date'], infer_datetime_format=True)

    return bets
Ejemplo n.º 6
0
def scrape_all_quotes() -> None:
    """
	Download all the quotes from the website and save them in the database.
	"""

    browser = None
    leagues = dbf.db_select(table='leagues', columns=['name'], where='')
    for league in leagues:
        start = time.time()
        browser = scrape_league_quotes(brow=browser, league_name=league)
        m, s = utl.time_needed(start)
        cfg.LOGGER.info(f'FILL DB WITH QUOTES - {league} aggiornata: {m}:{s}')

    browser.quit()
    utl.remove_matches_without_quotes()
Ejemplo n.º 7
0
def get_preds_as_df() -> pd.DataFrame:

    cols = [
        'id', 'bet_id', 'user', 'date', 'team1', 'team2', 'league',
        'bet_alias', 'quote', 'result', 'label'
    ]

    preds = dbf.db_select(table='predictions',
                          columns=cols,
                          where='result != "NULL"')

    preds = pd.DataFrame(preds, columns=cols)
    preds.set_index('id', drop=True, inplace=True)
    preds.index.name = None
    preds['date'] = pd.to_datetime(preds['date'], infer_datetime_format=True)

    return preds
Ejemplo n.º 8
0
def all_fields_and_bets(panel: webdriver) -> [(str, webdriver)]:

    # Select all fields we want to scrape
    fields_in_db = dbf.db_select(table='fields', columns=['name'], where='')

    fields_names = [f for i in fields_in_db for f, _ in (i.split('_'), )]
    fields_names = set(fields_names)

    all_fields_path = './/div[@class="market-info"]/div'
    all_bets_path = './/div[@class="market-selections"]'
    fields = panel.find_elements_by_xpath(all_fields_path)
    bets = panel.find_elements_by_xpath(all_bets_path)

    field_bets = []
    for field, bet_group in zip(fields, bets):
        field_name = field.get_attribute('innerText').upper().strip()
        if field_name in fields_names:
            field_bets.append((field_name, bet_group))

    return field_bets
Ejemplo n.º 9
0
def score(which) -> None:

    if which == 'general':
        year1, year2 = 2017, 2030
    else:
        year1, year2 = which.split('-')

    from_ = datetime.strptime(f'{year1}-08-01 00:00:00', '%Y-%m-%d %H:%M:%S')
    to_ = datetime.strptime(f'{year2}-07-31 00:00:00', '%Y-%m-%d %H:%M:%S')

    tmp = preds[(from_ <= preds['date']) & (preds['date'] <= to_)]

    names = [name for name in players]
    indices = np.array([compute_index(tmp, name) for name in names])
    data = sorted(zip(names, indices), key=lambda x: x[1], reverse=True)

    names, indices = zip(*data)
    indices = normalize_indices(raw_indices=indices)

    ratio = [get_user_ratio(tmp, name) for name in names]
    perc = [get_user_perc(tmp, name) for name in names]

    quotes = [get_user_avg_quotes(tmp, name) for name in names]
    avg_quote, avg_quoteW = zip(*quotes)

    colors = [get_user_color(name) for name in names]

    fig, ax = plt.subplots(figsize=(9, 7))

    bars = plt.bar(range(5),
                   indices,
                   0.5,
                   color=colors,
                   edgecolor='black',
                   linewidth=.8,
                   clip_on=False)
    plt.xticks(range(5), names, fontsize=16)
    plt.ylim(0, 1.35)
    plt.box(on=None)
    plt.tick_params(axis='x', which='both', bottom=False, labelbottom=True)
    plt.tick_params(axis='y', which='both', left=False, labelleft=False)
    plt.title(which, fontsize=16, fontweight='bold', style='italic')

    last_update = dbf.db_select(table='last_results_update',
                                columns=['message'],
                                where='')[0]
    plt.text(0.81, 0.98, str(last_update), transform=ax.transAxes, fontsize=8)

    for i, bar in enumerate(bars):
        text = f'{ratio[i]}\n{perc[i]}%\n{avg_quote[i]}\n{avg_quoteW[i]}'
        plt.text(bar.get_x() + bar.get_width() / 2,
                 indices[i] + 0.03,
                 text,
                 ha='center',
                 va='bottom',
                 fontsize=12,
                 style='italic')

    for i, bar in enumerate(bars):
        text = f'{indices[i]}'
        plt.text(bar.get_x() + bar.get_width() / 2,
                 indices[i] + 0.23,
                 text,
                 ha='center',
                 va='bottom',
                 fontsize=14,
                 fontweight='bold')

    for bar in bars:
        if not bar.get_height():
            bar.set_linewidth(0)

    plt.text(.8,
             .9,
             'Score',
             horizontalalignment='center',
             transform=ax.transAxes,
             fontweight='bold',
             fontsize=14)

    expl = 'Win/Total\n%\nAvg Quote\nAvg Quote WIN'
    plt.text(.8,
             .75,
             expl,
             horizontalalignment='center',
             transform=ax.transAxes,
             style='italic',
             fontsize=12)

    plt.savefig(f'score_{which}.png', dpi=120, bbox_inches='tight')
    plt.gcf().clear()
Ejemplo n.º 10
0
def get_user_color(nickname: str) -> str:

    color = dbf.db_select(table='people',
                          columns=['color'],
                          where=f'nick = "{nickname}"')[0]
    return color
Ejemplo n.º 11
0
def get_people() -> list:
    return dbf.db_select(table='people', columns=['nick'], where='')