import numpy as np import matplotlib.pyplot as plt import math from array import array import glob from Functions import ClassFunc import sys sys.path.insert(0, '/Users/boldrinicoder/lab4/FunctionClass') from Root_objects import ROOT_obj as R_o ROOT.gROOT.SetBatch() f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190510/*.txt")) try_path = "/Users/boldrinicoder/lab4/Prova_Dense" ClassFunc.mkdir_p(try_path) inf = 370 sup = 680 mean = 520 Rates = [] Err_Rates = [] Reso = [] Err_Reso = [] j = 0 for i in f: rate, err_rate, Res = ClassFunc.Fitter_Synchro(j, i, inf, sup, mean, try_path, 0) Rates.append(rate) print("RATEEEEEEEEEEEEEEE : ", rate)
from Root_objects import ROOT_obj as R_o ROOT.gROOT.SetBatch() #temperature .txt paths temp_may_path = "/Users/boldrinicoder/lab4/data/tempreborn.txt" temp_dec_path = "/Users/boldrinicoder/lab4/data/Temperature3/TEMPVENERDI1101.txt" #file spectra path f_may = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190513/*.txt")) f_dec = sorted(glob.glob("/Users/boldrinicoder/lab4/data/Temperature/*.txt")) #creating a folder to store results try_path = "/Users/boldrinicoder/lab4/Prova_Temp_combined" outpath1 = "./" ClassFunc.mkdir_p(try_path) #loading temperatures from the .txt temp_may = ClassFunc.Temp_reading(temp_may_path) temp_dec = ClassFunc.Temp_reading(temp_dec_path) #shapes were not right so we set them correctly #December f_dec_final = f_dec[49:] temp_dec_final = temp_dec[53:len(f_dec)+4] #May temp_may_final = [] for i in range(0, len(temp_may), 2): temp_may_final.append(float(temp_may[i])) #temp = [float(i) for i in temp[:len(Rates)] ]
import numpy as np import matplotlib.pyplot as plt import math from array import array import glob from Functions import ClassFunc import sys sys.path.insert(0, '/Users/boldrinicoder/lab4/FunctionClass') from Root_objects import ROOT_obj ############MAIN############# ROOT.gROOT.SetBatch(True) out_path = "/Users/boldrinicoder/lab4/Grafici_Sincro" f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190218/Sincro/*.txt")) index = 0 ClassFunc.mkdir_p(out_path) rate = [] err_rate = [] for i in f: ra, err_ra = ClassFunc.Fitter_Synchro(index, i, 400, 750, 550, out_path) #rate.append(ClassFunc.Fitter_Synchro(index, i, 400,750,550, out_path )) rate.append(ra) err_rate.append(err_ra) index += 1 x = np.arange(0, 360, 2.25) err_x = [0] * len(x) c = ROOT_obj.Create_Canvas(1300, 1000) g = ROOT_obj.TGraph_err_obj(len(rate), x, rate, err_x, err_rate, 20, 4, "Angle [Deg]", "Rate [s^(-1)]", "JustToShow") g.SetMarkerSize(0.1)
from Functions import ClassFunc import sys sys.path.insert(0, '/Users/boldrinicoder/lab4/FunctionClass') from Root_objects import ROOT_obj as robj ############MAIN############# ROOT.gROOT.SetBatch(True) out_path1 = "/Users/boldrinicoder/lab4/General_Graphs/pdfs" out_path2 = "/Users/boldrinicoder/lab4/High_Voltage" f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190118/*.txt")) #f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/181130/*.txt")) #f = f[10:19] #print(f) try_path = "/Users/boldrinicoder/lab4/Prova_Rateres" ClassFunc.mkdir_p(try_path) Voltages = [600,650,700,750,800,850,900,950,1000] means = [540,600,600,570,570,550,590,610,750] #means = [600,600,570,570,570,550,590,600,600] infs = [350,400,470,470,470,450,430,480,600] #infs = [450,400,430,470,470,400,430,450,450] sups = [700,750,750,730,730,750,700,750,950] #sups = [700,750,700,730,730,700,700,750,700] Rates = [] Err_Rates = [] Reso = [] Err_Reso = [] j = 0 for i in f:
from Functions import ClassFunc ROOT.gROOT.SetBatch(True) #reading all the txts f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190206/*.txt")) histos = [] xmax = [] """ for i in f[:2]: #histos.append(ClassFunc.Histo_Filler(i, 300, 850)) Rate.append(ClassFunc.Fitter(i, 300, 850,400, 0)[0]) Res.append(ClassFunc.Fitter(i, 300, 850,400, 0)[1]) """ real = ClassFunc.Fitter("1", f[1], 380, 570, 480, 1) #xmax.append(real) xm = ClassFunc.Fitter("2", f[2], 350, 570, 480, 1) xmax.append(xm) xm = ClassFunc.Fitter("3", f[3], 380, 570, 480, 1) xmax.append(xm) xm = ClassFunc.Fitter("4", f[4], 380, 570, 480, 1) xmax.append(xm) xm = ClassFunc.Fitter("5", f[5], 380, 570, 480, 1) xmax.append(xm) xm = ClassFunc.Fitter("6", f[6], 380, 570, 480, 1) xmax.append(xm) n = len(xmax) y = array('f', xmax) x = array('f', [560, 470, 680, 820, 660])
from Functions import ClassFunc import sys sys.path.insert(0, '/Users/boldrinicoder/lab4/FunctionClass') from Root_objects import ROOT_obj as robj ############MAIN############# ROOT.gROOT.SetBatch(True) out_path1 = "/Users/boldrinicoder/lab4/General_Graphs/pdfs" out_path2 = "/Users/boldrinicoder/lab4/Shaping_time" f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/181214/*.txt")) #f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/181212/*.txt")) #f = f[10:19] print(f) try_path = "/Users/boldrinicoder/lab4/Prova_RateRes" ClassFunc.mkdir_p(try_path) pulse_shape = [0.5, 1,2,3,6,10] means = [540,600,600,570,570,550] #means = [600,600,610,570,570,610] infs = [450,400,470,450,450,400] #infs = [450,400,500,470,470,500] sups = [700,750,750,700,700,700] #sups = [700,750,750,730,730,700] Rates = [] Err_Rates = [] Reso = [] Err_Reso = [] j = 0 for i in f:
from Functions import ClassFunc import sys sys.path.insert(0, '/Users/boldrinicoder/lab4/FunctionClass') from Root_objects import ROOT_obj as R_o ROOT.gROOT.SetBatch() temp_path = "/Users/boldrinicoder/lab4/data/tempreborn.txt" f = sorted(glob.glob("/Users/boldrinicoder/lab4/data/190513/*.txt")) try_path = "/Users/boldrinicoder/lab4/Prova_Temp" outpath1 = "/Users/boldrinicoder/lab4" outpath2 = "." outpath3 = "/Users/boldrinicoder/Desktop" ClassFunc.mkdir_p(try_path) temp = ClassFunc.Temp_reading(temp_path) inf = 500 sup = 700 mean = 600 """ Rates = [] Err_Rates = [] Reso = [] Err_Reso = [] j = 0 for i in f: