def test(): x = [[0.5, 0.6, 0.7], [0.4, 0.5, 0.5], [1.2, 1.3, 1.0], [1.4, 1.5, 0.8], [1.5, 1.3, 1.3]] y = [0, 0, 1, 1, 1] c = Config() gbdt = GBDT(config=c) gbdt.buildGbdt(x, y) data_features = gbdt.generateFeatures(x) print len(data_features[0])
def main(): X_train, X_train_lr, y_train, y_train_lr,X_test, y_test=generate_data() config=Config() gbdt=GBDT(config=config) gbdt.buildGbdt(X_train,y_train) trainDataFeatures=gbdt.generateFeatures(X_train_lr) testDataFeatures=gbdt.generateFeatures(X_test) print len(trainDataFeatures[0]) lrModel = LogisticRegression() lrModel.fit(trainDataFeatures,y_train_lr) #test model testLabel = lrModel.predict(testDataFeatures) accuracy = np.sum((np.array(testLabel)==np.array(y_test)))*1.0/len(y_test) print ("the accuracy is % f"%accuracy)