Ejemplo n.º 1
0
    def parse_shunts(self, cim: CIMCircuit, circuit: MultiCircuit,
                     busbar_dict):
        """

        :param cim:
        :param circuit:
        :param busbar_dict:
        :return:
        """
        if 'ShuntCompensator' in cim.elements_by_type.keys():
            for elm in cim.elements_by_type['ShuntCompensator']:
                b1 = elm.get_bus()
                B1 = try_bus(b1, busbar_dict)

                if B1 is not None:
                    g = 0
                    b = 0
                    sh = gcdev.Shunt(idtag=elm.uuid,
                                     name=str(elm.name),
                                     G=g,
                                     B=b)
                    circuit.add_shunt(B1, sh)
                else:
                    self.logger.add_error('Bus not found', elm.rfid)
Ejemplo n.º 2
0
def data_to_grid_object(data, pos_dict, codification="utf-8") -> MultiCircuit:
    """
    Turns the read data dictionary into a GridCal MultiCircuit object
    Args:
        data: Dictionary of data read from a DGS file
        pos_dict: Dictionary of objects and their positions read from a DGS file
    Returns: GridCal MultiCircuit object
    """
    ###############################################################################
    # Refactor data into classes
    ###############################################################################

    # store tables for easy reference

    '''
    ###############################################################################
    *  Line
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypLne,TypTow,TypGeo,TypCabsys
    *  chr_name: Characteristic Name
    *  dline: Parameters: Length of Line in km
    *  fline: Parameters: Derating Factor
    *  outserv: Out of Service
    *  pStoch: Failures: Element model in StoTyplne
    '''
    if "ElmLne" in data.keys():
        lines = data["ElmLne"]
    else:
        lines = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Line Type
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  Ithr: Rated Short-Time (1s) Current (Conductor) in kA
    *  aohl_: Cable / OHL
    *  cline: Parameters per Length 1,2-Sequence: Capacitance C' in uF/km
    *  cline0: Parameters per Length Zero Sequence: Capacitance C0' in uF/km
    *  nlnph: Phases:1:2:3
    *  nneutral: Number of Neutrals:0:1
    *  rline: Parameters per Length 1,2-Sequence: AC-Resistance R'(20°C) in Ohm/km
    *  rline0: Parameters per Length Zero Sequence: AC-Resistance R0' in Ohm/km
    *  rtemp: Max. End Temperature in degC
    *  sline: Rated Current in kA
    *  uline: Rated Voltage in kV
    *  xline: Parameters per Length 1,2-Sequence: Reactance X' in Ohm/km
    *  xline0: Parameters per Length Zero Sequence: Reactance X0' in Ohm/km
    '''
    if "TypLne" in data.keys():
        lines_types = data["TypLne"]
    else:
        lines_types = np.zeros((0, 20))

    '''
    ###############################################################################
    *  2-Winding Transformer
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypTr2
    *  chr_name: Characteristic Name
    *  sernum: Serial Number
    *  constr: Year of Construction
    *  cgnd_h: Internal Grounding Impedance, HV Side: Star Point:Connected:Not connected
    *  cgnd_l: Internal Grounding Impedance, LV Side: Star Point:Connected:Not connected
    *  i_auto: Auto Transformer
    *  nntap: Tap Changer 1: Tap Position
    *  ntrcn: Controller, Tap Changer 1: Automatic Tap Changing
    *  outserv: Out of Service
    *  ratfac: Rating Factor
    '''
    if "ElmTr2" in data.keys():
        transformers = data["ElmTr2"]
    else:
        transformers = np.zeros((0, 20))

    '''
    ###############################################################################
    *  2-Winding Transformer Type
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  curmg: Magnetising Impedance: No Load Current in %
    *  dutap: Tap Changer 1: Additional Voltage per Tap in %
    *  frnom: Nominal Frequency in Hz
    *  manuf: Manufacturer
    *  nntap0: Tap Changer 1: Neutral Position
    *  nt2ag: Vector Group: Phase Shift in *30deg
    *  ntpmn: Tap Changer 1: Minimum Position
    *  ntpmx: Tap Changer 1: Maximum Position
    *  pcutr: Positive Sequence Impedance: Copper Losses in kW
    *  pfe: Magnetising Impedance: No Load Losses in kW
    *  phitr: Tap Changer 1: Phase of du in deg
    *  strn: Rated Power in MVA
    *  tap_side: Tap Changer 1: at Side:HV:LV
    *  tr2cn_h: Vector Group: HV-Side:Y :YN:Z :ZN:D
    *  tr2cn_l: Vector Group: LV-Side:Y :YN:Z :ZN:D
    *  uk0tr: Zero Sequence Impedance: Short-Circuit Voltage uk0 in %
    *  uktr: Positive Sequence Impedance: Short-Circuit Voltage uk in %
    *  ur0tr: Zero Sequence Impedance: SHC-Voltage (Re(uk0)) uk0r in %
    *  utrn_h: Rated Voltage: HV-Side in kV
    *  utrn_l: Rated Voltage: LV-Side in kV
    *  zx0hl_n: Zero Sequence Magnetising Impedance: Mag. Impedance/uk0
    '''
    if "TypTr2" in data.keys():
        transformers_types = data["TypTr2"]
    else:
        transformers_types = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Terminal
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypBar
    *  chr_name: Characteristic Name
    *  iUsage: Usage:Busbar:Junction Node:Internal Node
    *  outserv: Out of Service
    *  phtech: Phase Technology:ABC:ABC-N:BI:BI-N:2PH:2PH-N:1PH:1PH-N:N
    *  uknom: Nominal Voltage: Line-Line in kV
    '''
    if "ElmTerm" in data.keys():
        buses = data["ElmTerm"]
    else:
        buses = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Cubicle
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  obj_bus: Bus Index
    *  obj_id: Connected with in Elm*
    '''
    if "StaCubic" in data.keys():
        cubicles = data["StaCubic"]
    else:
        cubicles = np.zeros((0, 20))

    '''
    ###############################################################################
    *  General Load
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypLod,TypLodind
    *  chr_name: Characteristic Name
    *  outserv: Out of Service
    *  plini: Operating Point: Active Power in MW
    *  qlini: Operating Point: Reactive Power in Mvar
    *  scale0: Operating Point: Scaling Factor
    '''
    if "ElmLod" in data.keys():
        loads = data["ElmLod"]
    else:
        loads = np.zeros((0, 20))

    '''
    ###############################################################################
    *  External Grid
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  bustp: Bus Type:PQ:PV:SL
    *  cgnd: Internal Grounding Impedance: Star Point:Connected:Not connected
    *  iintgnd: Neutral Conductor: N-Connection:None:At terminal (ABC-N):Separate terminal
    *  ikssmin: Min. Values: Short-Circuit Current Ik''min in kA
    *  r0tx0: Max. Values Impedance Ratio: R0/X0 max.
    *  r0tx0min: Min. Values Impedance Ratio: R0/X0 min.
    *  rntxn: Max. Values: R/X Ratio (max.)
    *  rntxnmin: Min. Values: R/X Ratio (min.)
    *  snss: Max. Values: Short-Circuit Power Sk''max in MVA
    *  snssmin: Min. Values: Short-Circuit Power Sk''min in MVA
    '''
    if "ElmXnet" in data.keys():
        external = data["ElmXnet"]
    else:
        external = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Grid
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  frnom: Nominal Frequency in Hz
    '''
    if "ElmNet" in data.keys():
        grid = data["ElmNet"]
    else:
        grid = np.zeros((0, 20))

    '''
    ###############################################################################
    '''
    if "ElmGenstat" in data.keys():
        static_generators = data["ElmGenstat"]
    else:
        static_generators = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Synchronous Machine
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypSym
    *  chr_name: Characteristic Name
    *  i_mot: Generator/Motor
    *  iv_mode: Local Controller
    *  ngnum: Number of: parallel Machines
    *  outserv: Out of Service
    *  pgini: Dispatch: Active Power in MW
    *  q_max: Reactive Power Operational Limits: Max. in p.u.
    *  q_min: Reactive Power Operational Limits: Min. in p.u.
    *  qgini: Dispatch: Reactive Power in Mvar
    *  usetp: Dispatch: Voltage in p.u.
    '''
    if "ElmSym" in data.keys():
        synchronous_machine = data["ElmSym"]
    else:
        synchronous_machine = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Synchronous Machine Type
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  cosn: Power Factor
    *  rstr: Stator Resistance: rstr in p.u.
    *  satur: For single fed short-circuit: Machine Type IEC909/IEC60909
    *  sgn: Nominal Apparent Power in MVA
    *  ugn: Nominal Voltage in kV
    *  xd: Synchronous Reactances: xd in p.u.
    *  xdsat: For single fed short-circuit: Reciprocal of short-circuit ratio (xdsat) in p.u.
    *  xdsss: Subtransient Reactance: saturated value xd''sat in p.u.
    *  xq: Synchronous Reactances: xq in p.u.
    '''
    if "TypSym" in data.keys():
        synchronous_machine_type = data["TypSym"]
    else:
        synchronous_machine_type = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Asynchronous Machine
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypAsm*,TypAsmo*,TypAsm1*
    *  chr_name: Characteristic Name
    *  i_mot: Generator/Motor
    *  ngnum: Number of: parallel Machines
    *  outserv: Out of Service
    *  pgini: Dispatch: Active Power in MW
    '''
    if "ElmAsm" in data.keys():
        asynchronous_machine = data["ElmAsm"]
    else:
        asynchronous_machine = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Synchronous Machine Type
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  i_mode: Input Mode
    *  aiazn: Consider Transient Parameter: Locked Rotor Current (Ilr/In) in p.u.
    *  amazn: Locked Rotor Torque in p.u.
    *  amkzn: Torque at Stalling Point in p.u.
    *  anend: Nominal Speed in rpm
    *  cosn: Rated Power Factor
    *  effic: Efficiency at nominal Operation in %
    *  frequ: Nominal Frequency in Hz
    *  i_cage: Rotor
    *  nppol: No of Pole Pairs
    *  pgn: Power Rating: Rated Mechanical Power in kW
    *  ugn: Rated Voltage in kV
    *  xmrtr: Rotor Leakage Reac. Xrm in p.u.
    *  xstr: Stator Reactance Xs in p.u.
    '''
    if "TypAsmo" in data.keys():
        asynchronous_machine_type = data["TypAsmo"]
    else:
        asynchronous_machine_type = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Shunt/Filter
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  ctech: Technology
    *  fres: Design Parameter (per Step): Resonance Frequency in Hz
    *  greaf0: Design Parameter (per Step): Quality Factor (at fr)
    *  iswitch: Controller: Switchable
    *  ncapa: Controller: Act.No. of Step
    *  ncapx: Controller: Max. No. of Steps
    *  outserv: Out of Service
    *  qtotn: Design Parameter (per Step): Rated Reactive Power, L-C in Mvar
    *  shtype: Shunt Type
    *  ushnm: Nominal Voltage in kV
    '''
    if "ElmShnt" in data.keys():
        shunts = data["ElmShnt"]
    else:
        shunts = np.zeros((0, 20))

    '''
    ###############################################################################
    *  Breaker/Switch
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypSwitch
    *  chr_name: Characteristic Name
    *  aUsage: Switch Type
    *  nneutral: No. of Neutrals:0:1
    *  nphase: No. of Phases:1:2:3
    *  on_off: Closed
    '''
    if "ElmCoup" in data.keys():
        switches = data["ElmCoup"]
    else:
        switches = np.zeros((0, 20))

        ###############################################################################
        # Post process the data
        ###############################################################################

    # put the tables that connect to a terminal in a list
    classes = [lines, transformers, loads, external, static_generators, shunts,
               synchronous_machine, asynchronous_machine]

    # construct the terminals dictionary
    '''
    $$StaCubic;ID(a:40);loc_name(a:40);fold_id(p);chr_name(a:20);obj_bus(i);obj_id(p)
    ********************************************************************************
    *  Cubicle
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  obj_bus: Bus Index
    *  obj_id: Connected with in Elm*
    ********************************************************************************
    '''
    terminals_dict = dict()  # dictionary to store the terminals ID associated with an object ID
    cub_obj_idx = cubicles['obj_id'].values
    cub_term_idx = cubicles['fold_id'].values

    # for i, elm_id in enumerate(cub_obj_idx):
    #     bus_idx = cub_term_idx[i]
    #     terminals_dict[elm_id] = bus_idx

    ID_idx = 0
    for cla in classes:
        if cla.__len__() > 0:
            for ID in cla['ID'].values:
                idx = np.where(cubicles == ID)[0]
                terminals_dict[ID] = cub_term_idx[idx]

    ###############################################################################
    # Generate GridCal data
    ###############################################################################

    # general values
    baseMVA = 100
    frequency = grid['frnom'][0]
    w = 2.0 * math.pi * frequency

    circuit = MultiCircuit()

    ####################################################################################################################
    # Terminals (nodes)
    ####################################################################################################################
    '''
    ********************************************************************************
    *  Terminal
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypBar
    *  iUsage: Usage:Busbar:Junction Node:Internal Node
    *  uknom: Nominal Voltage: Line-Line in kV
    *  chr_name: Characteristic Name
    *  outserv: Out of Service
    ********************************************************************************
    '''
    # print('Parsing terminals')
    buses_dict = dict()
    for i in range(len(buses)):
        ID = buses['ID'][i]
        x, y = pos_dict[ID]
        buses_dict[ID] = i
        bus_name = buses['loc_name'][i].decode(codification)   # BUS_Name
        vnom = buses['uknom'][i]
        bus = Bus(name=bus_name, vnom=vnom, vmin=0.9, vmax=1.1, xpos=x, ypos=-y, active=True)
        circuit.add_bus(bus)

    ####################################################################################################################
    # External grids (slacks)
    ####################################################################################################################
    '''
    ###############################################################################
    ********************************************************************************
    *  External Grid
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  outserv: Out of Service
    *  snss: Max. Values: Short-Circuit Power Sk''max in MVA
    *  rntxn: Max. Values: R/X Ratio (max.)
    *  z2tz1: Max. Values Impedance Ratio: Z2/Z1 max.
    *  snssmin: Min. Values: Short-Circuit Power Sk''min in MVA
    *  rntxnmin: Min. Values: R/X Ratio (min.)
    *  z2tz1min: Min. Values Impedance Ratio: Z2/Z1 min.
    *  chr_name: Characteristic Name
    *  bustp: Bus Type:PQ:PV:SL
    *  pgini: Operation Point: Active Power in MW
    *  qgini: Operation Point: Reactive Power in Mvar
    *  phiini: Operation Point: Angle in deg
    *  usetp: Operation Point: Voltage Setpoint in p.u.
    ********************************************************************************
    '''

    for i in range(len(external)):
        ID = external['ID'][i]

        if 'phiini' in external.columns.values:
            va = external['phiini'][i]
            vm = external['usetp'][i]
        else:
            va = 0
            vm = 1

        buses = terminals_dict[ID]  # array with the ID of the connection Buses
        bus1 = buses_dict[buses[0]]  # index of the bus

        bus_obj = circuit.buses[bus1]

        # apply the slack values to the buses structure if the element is marked as slack
        if external['bustp'].values[i] == b'SL':
            # create the slack entry on buses
            bus_obj.is_slack = True

            # BUSES[bus1, bd.BUS_TYPE] = 3
            # BUSES[bus1, bd.VA] = va
            # BUSES[bus1, bd.VM] = vm
            #
            # # create the slack entry on generators (add the slack generator)
            # gen_ = gen_line.copy()
            # gen_[gd.GEN_BUS] = bus1
            # gen_[gd.MBASE] = baseMVA
            # gen_[gd.VG] = vm
            # gen_[gd.GEN_STATUS] = 1
            # gen_[gd.PG] += external['pgini'].values[i]
            #
            # GEN.append(gen_)
            # GEN_NAMES.append(external['loc_name'][i])

        elif external['bustp'].values[i] == b'PV':

            if 'pgini' in external.columns.values:
                p = external['pgini'].values[i]
            else:
                p = 0

            # add a generator to the bus
            gen = Generator(name=external['loc_name'][i].decode(codification),
                            active_power=p,
                            voltage_module=vm, Qmin=-9999, Qmax=9999, Snom=9999,
                            power_prof=None, vset_prof=None)
            circuit.add_generator(bus_obj, gen)

            # # mark the bus as pv
            # BUSES[bus1, bd.BUS_TYPE] = 2
            # BUSES[bus1, bd.VA] = 0.0
            # BUSES[bus1, bd.VM] = vm
            # # add the PV entry on generators
            # gen_ = gen_line.copy()
            # gen_[gd.GEN_BUS] = bus1
            # gen_[gd.MBASE] = baseMVA
            # gen_[gd.VG] = vm
            # gen_[gd.GEN_STATUS] = 1
            # gen_[gd.PG] += external['pgini'].values[i]
            #
            # GEN.append(gen_)
            # GEN_NAMES.append(external['loc_name'][i])

        elif external['bustp'].values[i] == b'PQ':
            # Add a load to the bus
            load = Load(name=external['loc_name'][i].decode(codification),
                        P=external['pgini'].values[i],
                        Q=external['qgini'].values[i])
            circuit.add_load(bus_obj, load)

            # BUSES[bus1, bd.BUS_TYPE] = 1
            # BUSES[bus1, bd.VA] = va
            # BUSES[bus1, bd.VM] = vm
            # BUSES[bus1, bd.PD] += external['pgini'].values[i]
            # BUSES[bus1, bd.QD] += external['qgini'].values[i]

    ####################################################################################################################
    # Lines (branches)
    ####################################################################################################################
    # print('Parsing lines')

    if lines_types.__len__() > 0:
        lines_ID = lines['ID'].values
        lines_type_id = lines['typ_id'].values
        line_types_ID = lines_types['ID'].values
        lines_lenght = lines['dline'].values

        if 'outserv' in lines.keys():
            lines_enables = lines['outserv']
        else:
            lines_enables = np.ones(len(lines_ID))

        lines_R = lines_types['rline'].values
        lines_L = lines_types['xline'].values
        lines_C = lines_types['cline'].values
        lines_rate = lines_types['sline'].values
        lines_voltage = lines_types['uline'].values
        for i in range(len(lines)):
            # line_ = branch_line.copy()

            ID = lines_ID[i]
            ID_Type = lines_type_id[i]
            type_idx = np.where(line_types_ID == ID_Type)[0][0]

            buses = terminals_dict[ID]  # array with the ID of the connection Buses
            bus1 = buses_dict[buses[0]]
            bus2 = buses_dict[buses[1]]

            bus_from = circuit.buses[bus1]
            bus_to = circuit.buses[bus2]

            status = lines_enables[i]

            # impedances
            lenght = np.double(lines_lenght[i])
            R = np.double(lines_R[type_idx]) * lenght  # Ohm
            L = np.double(lines_L[type_idx]) * lenght  # Ohm
            C = np.double(lines_C[type_idx]) * lenght * w * 1e-6  # S (siemens)

            # pass impedance to per unit
            vbase = np.double(lines_voltage[type_idx])  # kV
            zbase = vbase**2 / baseMVA  # Ohm
            ybase = 1.0 / zbase  # S
            r = R / zbase  # pu
            l = L / zbase  # pu
            b = C / ybase  # pu

            # rated power
            Irated = np.double(lines_rate[type_idx])  # kA
            Smax = Irated * vbase  # MVA

            line = Branch(bus_from=bus_from, bus_to=bus_to,
                          name=lines['loc_name'][i].decode(codification),
                          r=r,
                          x=l,
                          g=1e-20,
                          b=b,
                          rate=Smax,
                          tap=1,
                          shift_angle=0,
                          active=status, mttf=0, mttr=0)

            circuit.add_branch(line)

            # # put all in the correct column
            # line_[brd.F_BUS] = bus1
            # line_[brd.T_BUS] = bus2
            # line_[brd.BR_R] = r
            # line_[brd.BR_X] = l
            # line_[brd.BR_B] = c
            # line_[brd.RATE_A] = Smax
            # line_[brd.BR_STATUS] = status
            # BRANCHES.append(line_)
            #
            # name_ = lines['loc_name'][i]  # line_Name
            # BRANCH_NAMES.append(name_)
            #
            # # add edge to graph
            # g.add_edge(bus1, bus2)
    else:
        warn('Line types are empty')

    ####################################################################################################################
    # Transformers (Branches)
    ####################################################################################################################
    # print('Parsing transformers')

    '''
    ********************************************************************************
    *  2-Winding Transformer
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypTr2
    *  outserv: Out of Service
    *  nntap: Tap Changer 1: Tap Position
    *  sernum: Serial Number
    *  constr: Year of Construction
    *  chr_name: Characteristic Name
    ********************************************************************************
    '''

    if len(transformers_types) > 0:
        '''
        ********************************************************************************
        *  2-Winding Transformer Type
        *
        *  ID: Unique identifier for DGS file
        *  loc_name: Name
        *  fold_id: In Folder
        *  strn: Rated Power in MVA
        *  frnom: Nominal Frequency in Hz
        *  utrn_h: Rated Voltage: HV-Side in kV
        *  utrn_l: Rated Voltage: LV-Side in kV
        *  uktr: Positive Sequence Impedance: Short-Circuit Voltage uk in %
        *  pcutr: Positive Sequence Impedance: Copper Losses in kW
        *  uk0tr: Zero Sequence Impedance: Short-Circuit Voltage uk0 in %
        *  ur0tr: Zero Sequence Impedance: SHC-Voltage (Re(uk0)) uk0r in %
        *  tr2cn_h: Vector Group: HV-Side:Y :YN:Z :ZN:D
        *  tr2cn_l: Vector Group: LV-Side:Y :YN:Z :ZN:D
        *  nt2ag: Vector Group: Phase Shift in *30deg
        *  curmg: Magnetizing Impedance: No Load Current in %
        *  pfe: Magnetizing Impedance: No Load Losses in kW
        *  zx0hl_n: Zero Sequence Magnetizing Impedance: Mag. Impedance/uk0
        *  tap_side: Tap Changer 1: at Side:HV:LV
        *  dutap: Tap Changer 1: Additional Voltage per Tap in %
        *  phitr: Tap Changer 1: Phase of du in deg
        *  nntap0: Tap Changer 1: Neutral Position
        *  ntpmn: Tap Changer 1: Minimum Position
        *  ntpmx: Tap Changer 1: Maximum Position
        *  manuf: Manufacturer
        *  chr_name: Characteristic Name
        ********************************************************************************
        '''
        type_ID = transformers_types['ID'].values
        HV_nominal_voltage = transformers_types['utrn_h'].values
        LV_nominal_voltage = transformers_types['utrn_l'].values
        Nominal_power = transformers_types['strn'].values
        Copper_losses = transformers_types['pcutr'].values
        Iron_losses = transformers_types['pfe'].values
        No_load_current = transformers_types['curmg'].values
        Short_circuit_voltage = transformers_types['uktr'].values
        # GR_hv1 = transformers_types['ID']
        # GX_hv1 = transformers_types['ID']
        for i in range(len(transformers)):

            # line_ = branch_line.copy()

            ID = transformers['ID'][i]
            ID_Type = transformers['typ_id'][i]

            if ID_Type in type_ID:
                type_idx = np.where(type_ID == ID_Type)[0][0]
                buses = terminals_dict[ID]  # array with the ID of the connection Buses
                bus1 = buses_dict[buses[0]]
                bus2 = buses_dict[buses[1]]

                bus_from = circuit.buses[bus1]
                bus_to = circuit.buses[bus2]

                Smax = Nominal_power[type_idx]

                # Uhv, Ulv, Sn, Pcu, Pfe, I0, Usc
                tpe = TransformerType(hv_nominal_voltage=HV_nominal_voltage[type_idx],
                                      lv_nominal_voltage=LV_nominal_voltage[type_idx],
                                      nominal_power=Smax,
                                      copper_losses=Copper_losses[type_idx],
                                      iron_losses=Iron_losses[type_idx],
                                      no_load_current=No_load_current[type_idx],
                                      short_circuit_voltage=Short_circuit_voltage[type_idx],
                                      gr_hv1=0.5,
                                      gx_hv1=0.5)

                Zs, Zsh = tpe.get_impedances()

                if Zsh != 0:
                    Ysh = 1.0 / Zsh
                else:
                    Ysh = 0j

                status = 1 - transformers['outserv'][i]

                trafo = Branch(bus_from=bus_from,
                               bus_to=bus_to,
                               name=transformers['loc_name'][i].decode(codification),
                               r=Zs.real,
                               x=Zs.imag,
                               g=Ysh.real,
                               b=Ysh.imag,
                               rate=Smax,
                               tap=1.0,
                               shift_angle=0.0,
                               active=status,
                               mttf=0,
                               mttr=0,
                               branch_type=BranchType.Transformer)

                circuit.add_branch(trafo)

            else:
                warn('Transformer type not found!')
    else:
        warn('Transformer types are empty')

    ####################################################################################################################
    # Loads (nodes)
    ####################################################################################################################
    '''
    ********************************************************************************
    *  General Load
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypLod,TypLodind
    *  chr_name: Characteristic Name
    *  plini: Operating Point: Active Power in MW
    *  qlini: Operating Point: Reactive Power in Mvar
    *  scale0: Operating Point: Scaling Factor
    ********************************************************************************
    '''
    # print('Parsing Loads')
    if len(loads) > 0:
        loads_ID = loads['ID']
        loads_P = loads['plini']
        loads_Q = loads['qlini']
        scale = loads['scale0']
        for i in range(len(loads)):
            ID = loads_ID[i]
            bus_idx = buses_dict[(terminals_dict[ID][0])]
            bus_obj = circuit.buses[bus_idx]
            p = loads_P[i] * scale[i]  # in MW
            q = loads_Q[i] * scale[i]  # in MVA

            load = Load(name=loads['loc_name'][i].decode(codification),
                        P=p,
                        Q=q)

            circuit.add_load(bus_obj, load)

            # BUSES[bus_idx, 2] += p
            # BUSES[bus_idx, 3] += q
    else:
        warn('There are no loads')

    ####################################################################################################################
    # Shunts
    ####################################################################################################################
    '''
    ********************************************************************************
    *  Shunt/Filter
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  chr_name: Characteristic Name
    *  shtype: Shunt Type
    *  ushnm: Nominal Voltage in kV
    *  qcapn: Design Parameter (per Step): Rated Reactive Power, C in Mvar
    *  ncapx: Controller: Max. No. of Steps
    *  ncapa: Controller: Act.No. of Step
    *  outserv: Out of Service
    ********************************************************************************
    '''
    for i in range(len(shunts)):
        ID = shunts['ID'][i]
        buses = terminals_dict[ID]  # array with the ID of the connection Buses
        bus1 = buses_dict[buses[0]]
        bus_obj = circuit.buses[bus1]
        name = shunts['loc_name'][i].decode(codification)

        if 'qcapn' in shunts.columns.values:
            b = shunts['ushnm'][i] / shunts['qcapn'][i]
        elif 'qtotn' in shunts.columns.values:
            b = shunts['ushnm'][i] / shunts['qtotn'][i]
        else:
            b = 1e-20

        shunt = Shunt(name=name, B=b)
        circuit.add_shunt(bus_obj, shunt)

    ####################################################################################################################
    # Static generators (Gen)
    ####################################################################################################################
    '''
    ********************************************************************************
    *  Static Generator
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  bus1: Terminal in StaCubic
    *  outserv: Out of Service
    *  sgn: Ratings: Nominal Apparent Power in MVA
    *  cosn: Ratings: Power Factor
    *  ngnum: Number of: parallel Machines
    *  pgini: Dispatch: Active Power in MW
    *  qgini: Dispatch: Reactive Power in Mvar
    *  av_mode: Local Controller
    *  ip_ctrl: Reference Machine
    ********************************************************************************
    '''
    for i in range(len(static_generators)):
        ID = static_generators['ID'][i]
        buses = terminals_dict[ID]  # array with the ID of the connection Buses
        bus1 = buses_dict[buses[0]]
        bus_obj = circuit.buses[bus1]
        mode = static_generators['av_mode'][i]
        num_machines = static_generators['ngnum'][i]

        gen = StaticGenerator(name=static_generators['loc_name'][i].decode(codification),
                              P=static_generators['pgini'][i] * num_machines,
                              Q=static_generators['qgini'][i] * num_machines)
        circuit.add_static_generator(bus_obj, gen)

    ####################################################################################################################
    # Synchronous Machine (Gen)
    ####################################################################################################################
    '''
    ********************************************************************************
    *  Synchronous Machine
    *
    *  ID: Unique identifier for DGS file
    *  loc_name: Name
    *  fold_id: In Folder
    *  typ_id: Type in TypSym
    *  ngnum: Number of: parallel Machines
    *  i_mot: Generator/Motor
    *  chr_name: Characteristic Name
    *  outserv: Out of Service
    *  pgini: Dispatch: Active Power in MW
    *  qgini: Dispatch: Reactive Power in Mvar
    *  usetp: Dispatch: Voltage in p.u.
    *  iv_mode: Mode of Local Voltage Controller
    *  q_min: Reactive Power Operational Limits: Min. in p.u.
    *  q_max: Reactive Power Operational Limits: Max. in p.u.
    ********************************************************************************
    '''
    for i in range(len(synchronous_machine)):
        ID = synchronous_machine['ID'][i]
        buses = terminals_dict[ID]  # array with the ID of the connection Buses
        bus1 = buses_dict[buses[0]]
        bus_obj = circuit.buses[bus1]
        num_machines = synchronous_machine['ngnum'][i]

        # Get the type element
        '''
        ********************************************************************************
        *  Synchronous Machine Type
        *
        *  ID: Unique identifier for DGS file
        *  loc_name: Name
        *  fold_id: In Folder
        *  sgn: Nominal Apparent Power in MVA
        *  ugn: Nominal Voltage in kV
        *  cosn: Power Factor
        *  xd: Synchronous Reactances: xd in p.u.
        *  xq: Synchronous Reactances: xq in p.u.
        *  xdsss: Subtransient Reactance: saturated value xd''sat in p.u.
        *  rstr: Stator Resistance: rstr in p.u.
        *  xdsat: For single fed short-circuit: Reciprocal of short-circuit ratio (xdsat) in p.u.
        *  satur: For single fed short-circuit: Machine Type IEC909/IEC60909
        ********************************************************************************
        '''
        typ = synchronous_machine_type[synchronous_machine_type.ID == synchronous_machine['typ_id'][i]]

        snom = typ['sgn'].values[0]
        vnom = synchronous_machine['usetp'][i]
        name = synchronous_machine['loc_name'][i].decode(codification)
        gen = Generator(name=name,
                        active_power=synchronous_machine['pgini'][i] * num_machines,
                        voltage_module=vnom,
                        Qmin=synchronous_machine['q_min'][i] * num_machines * snom,
                        Qmax=synchronous_machine['q_max'][i] * num_machines * snom,
                        Snom=snom,
                        power_prof=None,
                        vset_prof=None)
        circuit.add_generator(bus_obj, gen)

        # if synchronous_machine['pgini'][i] != 0:
        #     # gen = StaticGenerator(name=name, power=complex(0, synchronous_machine['pgini'][i]))
        #     gen = Generator(name=name, active_power=synchronous_machine['pgini'][i])
        #     circuit.add_static_generator(bus_obj, gen)

    return circuit
Ejemplo n.º 3
0
def parse_json_data_v2(data: dict, logger: Logger):
    """
    New Json parser
    :param data:
    :param logger:
    :return:
    """
    devices = data['devices']
    profiles = data['profiles']

    if DeviceType.CircuitDevice.value in devices.keys():

        dta = devices[DeviceType.CircuitDevice.value]
        circuit = MultiCircuit(name=str(dta['name']),
                               Sbase=float(dta['sbase']),
                               fbase=float(dta['fbase']),
                               idtag=str(dta['id']))

        jcircuit = devices["Circuit"]
        circuit.Sbase = jcircuit["sbase"]

        # Countries
        country_dict = dict()
        if 'Country' in devices.keys():
            elms = devices["Country"]
            for jentry in elms:
                elm = Country(idtag=str(jentry['id']),
                              code=str(jentry['code']),
                              name=str(jentry['name']))
                circuit.countries.append(elm)
                country_dict[elm.idtag] = elm
        else:
            elm = Country(idtag=None, code='Default', name='Default')
            circuit.countries.append(elm)

        # Areas
        areas_dict = dict()
        if 'Area' in devices.keys():
            elms = devices["Area"]
            for jentry in elms:
                elm = Area(idtag=str(jentry['id']),
                           code=str(jentry['code']),
                           name=str(jentry['name']))
                circuit.areas.append(elm)
                areas_dict[elm.idtag] = elm
        else:
            elm = Area(idtag=None, code='Default', name='Default')
            circuit.areas.append(elm)

        # Zones
        zones_dict = dict()
        if 'Zone' in devices.keys():
            elms = devices["Zone"]
            for jentry in elms:
                elm = Zone(idtag=str(jentry['id']),
                           code=str(jentry['code']),
                           name=str(jentry['name']))
                circuit.zones.append(elm)
                zones_dict[elm.idtag] = elm
        else:
            elm = Zone(idtag=None, code='Default', name='Default')
            circuit.zones.append(elm)

        # Substations
        substations_dict = dict()
        if 'Substation' in devices.keys():
            elms = devices["Substation"]
            for jentry in elms:
                elm = Substation(idtag=str(jentry['id']),
                                 code=str(jentry['code']),
                                 name=str(jentry['name']))
                circuit.substations.append(elm)
                substations_dict[elm.idtag] = elm
        else:
            elm = Substation(idtag=None, code='Default', name='Default')
            circuit.substations.append(elm)

        # buses
        bus_dict = dict()
        if 'Bus' in devices.keys():
            buses = devices["Bus"]
            for jentry in buses:

                area_id = str(jentry['area']) if 'area' in jentry.keys() else ''
                zone_id = str(jentry['zone']) if 'zone' in jentry.keys() else ''
                substation_id = str(jentry['substation']) if 'substation' in jentry.keys() else ''
                country_id = str(jentry['country']) if 'country' in jentry.keys() else ''

                if area_id in areas_dict.keys():
                    area = areas_dict[area_id]
                else:
                    area = circuit.areas[0]

                if zone_id in zones_dict.keys():
                    zone = zones_dict[zone_id]
                else:
                    zone = circuit.zones[0]

                if substation_id in substations_dict.keys():
                    substation = substations_dict[substation_id]
                else:
                    substation = circuit.substations[0]

                if country_id in country_dict.keys():
                    country = country_dict[country_id]
                else:
                    country = circuit.countries[0]

                bus = Bus(name=str(jentry['name']),
                          idtag=str(jentry['id']),
                          vnom=float(jentry['vnom']),
                          vmin=float(jentry['vmin']),
                          vmax=float(jentry['vmax']),
                          r_fault=float(jentry['rf']),
                          x_fault=float(jentry['xf']),
                          xpos=float(jentry['x']),
                          ypos=float(jentry['y']),
                          height=float(jentry['h']),
                          width=float(jentry['w']),
                          active=bool(jentry['active']),
                          is_slack=bool(jentry['is_slack']),
                          area=area,
                          zone=zone,
                          substation=substation,
                          country=country,
                          longitude=float(jentry['lon']),
                          latitude=float(jentry['lat']))

                bus_dict[jentry['id']] = bus
                circuit.add_bus(bus)

        if 'Generator' in devices.keys():
            generators = devices["Generator"]
            for jentry in generators:
                gen = Generator(name=str(jentry['name']),
                                idtag=str(jentry['id']),
                                active_power=float(jentry['p']),
                                power_factor=float(jentry['pf']),
                                voltage_module=float(jentry['vset']),
                                is_controlled=bool(jentry['is_controlled']),
                                Qmin=float(jentry['qmin']),
                                Qmax=float(jentry['qmax']),
                                Snom=float(jentry['snom']),
                                active=bool(jentry['active']),
                                p_min=float(jentry['pmin']),
                                p_max=float(jentry['pmax']),
                                op_cost=float(jentry['cost']),
                                )
                gen.bus = bus_dict[jentry['bus']]
                circuit.add_generator(gen.bus, gen)

        if 'Battery' in devices.keys():
            batteries = devices["Battery"]
            for jentry in batteries:
                gen = Battery(name=str(jentry['name']),
                              idtag=str(jentry['id']),
                              active_power=float(jentry['p']),
                              power_factor=float(jentry['pf']),
                              voltage_module=float(jentry['vset']),
                              is_controlled=bool(jentry['is_controlled']),
                              Qmin=float(jentry['qmin']),
                              Qmax=float(jentry['qmax']),
                              Snom=float(jentry['snom']),
                              active=bool(jentry['active']),
                              p_min=float(jentry['pmin']),
                              p_max=float(jentry['pmax']),
                              op_cost=float(jentry['cost']),
                              )
                gen.bus = bus_dict[jentry['bus']]
                circuit.add_battery(gen.bus, gen)

        if 'Load' in devices.keys():
            loads = devices["Load"]
            for jentry in loads:
                elm = Load(name=str(jentry['name']),
                           idtag=str(jentry['id']),
                           P=float(jentry['p']),
                           Q=float(jentry['q']),
                           active=bool(jentry['active']))
                elm.bus = bus_dict[jentry['bus']]
                circuit.add_load(elm.bus, elm)

        if "Shunt" in devices.keys():
            shunts = devices["Shunt"]
            for jentry in shunts:
                elm = Shunt(name=str(jentry['name']),
                            idtag=str(jentry['id']),
                            G=float(jentry['g']),
                            B=float(jentry['b']),
                            active=bool(jentry['active']))
                elm.bus = bus_dict[jentry['bus']]
                circuit.add_shunt(elm.bus, elm)

        if "Line" in devices.keys():
            lines = devices["Line"]
            for entry in lines:
                elm = Line(bus_from=bus_dict[entry['bus_from']],
                           bus_to=bus_dict[entry['bus_to']],
                           name=str(entry['name']),
                           idtag=str(entry['id']),
                           r=float(entry['r']),
                           x=float(entry['x']),
                           b=float(entry['b']),
                           rate=float(entry['rate']),
                           active=entry['active'],
                           length=float(entry['length']),
                           )
                circuit.add_line(elm)

        if "Transformer" in devices.keys() or "Transformer2w" in devices.keys():

            if "Transformer" in devices.keys():
                transformers = devices["Transformer"]
            elif "Transformer2w" in devices.keys():
                transformers = devices["Transformer2w"]
            else:
                raise Exception('Transformer key not found')

            for entry in transformers:
                elm = Transformer2W(bus_from=bus_dict[entry['bus_from']],
                                    bus_to=bus_dict[entry['bus_to']],
                                    name=str(entry['name']),
                                    idtag=str(entry['id']),
                                    r=float(entry['r']),
                                    x=float(entry['x']),
                                    g=float(entry['g']),
                                    b=float(entry['b']),
                                    rate=float(entry['rate']),
                                    active=bool(entry['active']),
                                    tap=float(entry['tap_module']),
                                    shift_angle=float(entry['tap_angle']),
                                    )
                circuit.add_transformer2w(elm)

        if "VSC" in devices.keys():
            vsc = devices["VSC"]

            # TODO: call correct_buses_connection()

        if "HVDC Line" in devices.keys():
            hvdc = devices["HVDC Line"]

        return circuit

    else:
        logger.add('The Json structure does not have a Circuit inside the devices!')
        return MultiCircuit()
Ejemplo n.º 4
0
def parse_json_data_v2(data: dict, logger: Logger):
    """
    New Json parser
    :param data:
    :param logger:
    :return:
    """
    devices = data['devices']
    profiles = data['profiles']

    if DeviceType.CircuitDevice.value in devices.keys():

        dta = devices[DeviceType.CircuitDevice.value]
        circuit = MultiCircuit(name=str(dta['name']),
                               Sbase=float(dta['sbase']),
                               fbase=float(dta['fbase']),
                               idtag=str(dta['id']))

        jcircuit = devices["Circuit"]
        circuit.Sbase = jcircuit["sbase"]

        bus_dict = dict()

        if 'Bus' in devices.keys():
            buses = devices["Bus"]
            for jentry in buses:
                bus = Bus(name=str(jentry['name']),
                          idtag=str(jentry['id']),
                          vnom=float(jentry['vnom']),
                          vmin=float(jentry['vmin']),
                          vmax=float(jentry['vmax']),
                          r_fault=float(jentry['rf']),
                          x_fault=float(jentry['xf']),
                          xpos=float(jentry['x']),
                          ypos=float(jentry['y']),
                          height=float(jentry['h']),
                          width=float(jentry['w']),
                          active=bool(jentry['active']),
                          is_slack=bool(jentry['is_slack']),
                          # is_dc=jbus['id'],
                          area=jentry['area'],
                          zone=jentry['zone'],
                          substation=jentry['substation'],
                          # country=jbus['id'],
                          longitude=float(jentry['lon']),
                          latitude=float(jentry['lat']) )

                bus_dict[jentry['id']] = bus
                circuit.add_bus(bus)

        if 'Generator' in devices.keys():
            generators = devices["Generator"]
            for jentry in generators:
                gen = Generator(name=str(jentry['name']),
                                idtag=str(jentry['id']),
                                active_power=float(jentry['p']),
                                power_factor=float(jentry['pf']),
                                voltage_module=float(jentry['vset']),
                                is_controlled=bool(jentry['is_controlled']),
                                Qmin=float(jentry['qmin']),
                                Qmax=float(jentry['qmax']),
                                Snom=float(jentry['snom']),
                                # power_prof=jgen['name'],
                                # power_factor_prof=jgen['name'],
                                # vset_prof=jgen['name'],
                                # Cost_prof=jgen['name'],
                                active=bool(jentry['active']),
                                p_min=float(jentry['pmin']),
                                p_max=float(jentry['pmax']),
                                op_cost=float(jentry['cost']),
                                # Sbase=jgen['name'],
                                # enabled_dispatch=jgen['name'],
                                # mttf=jgen['name'],
                                # mttr=jgen['name']
                                )
                gen.bus = bus_dict[jentry['bus']]
                circuit.add_generator(gen.bus, gen)

        if 'Battery' in devices.keys():
            batteries = devices["Battery"]
            for jentry in batteries:
                gen = Battery(name=str(jentry['name']),
                              idtag=str(jentry['id']),
                              active_power=float(jentry['p']),
                              power_factor=float(jentry['pf']),
                              voltage_module=float(jentry['vset']),
                              is_controlled=bool(jentry['is_controlled']),
                              Qmin=float(jentry['qmin']),
                              Qmax=float(jentry['qmax']),
                              Snom=float(jentry['snom']),
                              # power_prof=jgen['name'],
                              # power_factor_prof=jgen['name'],
                              # vset_prof=jgen['name'],
                              # Cost_prof=jgen['name'],
                              active=bool(jentry['active']),
                              p_min=float(jentry['pmin']),
                              p_max=float(jentry['pmax']),
                              op_cost=float(jentry['cost']),
                              # Sbase=jgen['name'],
                              # enabled_dispatch=jgen['name'],
                              # mttf=jgen['name'],
                              # mttr=jgen['name']
                              )
                gen.bus = bus_dict[jentry['bus']]
                circuit.add_battery(gen.bus, gen)

        if 'Load' in devices.keys():
            loads = devices["Load"]
            for jentry in loads:
                elm = Load(name=str(jentry['name']),
                           idtag=str(jentry['id']),
                           # G: float = 0.0,
                           # B: float = 0.0,
                           # Ir: float = 0.0,
                           # Ii: float = 0.0,
                           P=float(jentry['p']),
                           Q=float(jentry['q']),
                           # cost=jentry['cost'],
                           # G_prof: Any = None,
                           # B_prof: Any = None,
                           # Ir_prof: Any = None,
                           # Ii_prof: Any = None,
                           # P_prof: Any = None,
                           # Q_prof: Any = None,
                           active=bool(jentry['active']))
                elm.bus = bus_dict[jentry['bus']]
                circuit.add_load(elm.bus, elm)

        if "Shunt" in devices.keys():
            shunts = devices["Shunt"]
            for jentry in shunts:
                elm = Shunt(name=str(jentry['name']),
                            idtag=str(jentry['id']),
                            G=float(jentry['g']),
                            B=float(jentry['b']),
                            # G_prof: Any = None,
                            # B_prof: Any = None,
                            active=bool(jentry['active']))
                elm.bus = bus_dict[jentry['bus']]
                circuit.add_shunt(elm.bus, elm)

        if "Line" in devices.keys():
            lines = devices["Line"]
            for entry in lines:
                elm = Line(bus_from=bus_dict[entry['bus_from']],
                           bus_to=bus_dict[entry['bus_to']],
                           name=str(entry['name']),
                           idtag=str(entry['id']),
                           r=float(entry['r']),
                           x=float(entry['x']),
                           b=float(entry['b']),
                           rate=float(entry['rate']),
                           active=entry['active'],
                           # tolerance: int = 0,
                           # cost: float = 0.0,
                           # mttf: int = 0,
                           # mttr: int = 0,
                           # r_fault: float = 0.0,
                           # x_fault: float = 0.0,
                           # fault_pos: float = 0.5,
                           length=float(entry['length']),
                           # temp_base: int = 20,
                           # temp_oper: int = 20,
                           # alpha: float = 0.00330,
                           # template: LineTemplate = LineTemplate(),
                           # rate_prof: Any = None,
                           # Cost_prof: Any = None,
                           # active_prof: Any = None,
                           # temp_oper_prof: Any = None
                           )
                circuit.add_line(elm)

        if "Transformer" in devices.keys():
            transformers = devices["Transformer"]
            for entry in transformers:
                elm = Transformer2W(bus_from=bus_dict[entry['bus_from']],
                                    bus_to=bus_dict[entry['bus_to']],
                                    name=str(entry['name']),
                                    idtag=str(entry['id']),
                                    r=float(entry['r']),
                                    x=float(entry['x']),
                                    g=float(entry['g']),
                                    b=float(entry['b']),
                                    rate=float(entry['rate']),
                                    active=bool(entry['active']),
                                    tap=float(entry['tap_module']),
                                    shift_angle=float(entry['tap_angle']),
                                    # tolerance: int = 0,
                                    # cost: float = 0.0,
                                    # mttf: int = 0,
                                    # mttr: int = 0,
                                    # r_fault: float = 0.0,
                                    # x_fault: float = 0.0,
                                    # fault_pos: float = 0.5,
                                    # temp_base: int = 20,
                                    # temp_oper: int = 20,
                                    # alpha: float = 0.00330,
                                    # template: LineTemplate = LineTemplate(),
                                    # rate_prof: Any = None,
                                    # Cost_prof: Any = None,
                                    # active_prof: Any = None,
                                    # temp_oper_prof: Any = None
                                    )
                circuit.add_transformer2w(elm)

        if "VSC" in devices.keys():
            vsc = devices["VSC"]

        if "HVDC Line" in devices.keys():
            hvdc = devices["HVDC Line"]

        return circuit

    else:
        logger.add('The Json structure does not have a Circuit inside the devices!')
        return MultiCircuit()