def post_solve(self):
        self.solution_fast = deepcopy(self.solution)

        if self.cycles == 0:
            terminal = 1
        else:
            terminal = self.cycles
            self.solution[terminal] = self.solution_terminal_cs

        for i in range(terminal):
            solution = self.solution[i]

            # Construct the consumption function as a linear interpolation.
            cFunc = LinearInterp(solution.mNrm, solution.cNrm)

            """
            Defines the value and marginal value functions for this period.
            Uses the fact that for a perfect foresight CRRA utility problem,
            if the MPC in period t is :math:`\kappa_{t}`, and relative risk
            aversion :math:`\rho`, then the inverse value vFuncNvrs has a
            constant slope of :math:`\kappa_{t}^{-\rho/(1-\rho)}` and
            vFuncNvrs has value of zero at the lower bound of market resources
            mNrmMin.  See PerfForesightConsumerType.ipynb documentation notebook
            for a brief explanation and the links below for a fuller treatment.

            https://www.econ2.jhu.edu/people/ccarroll/public/lecturenotes/consumption/PerfForesightCRRA/#vFuncAnalytical
            https://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs/#vFuncPF
            """

            vFuncNvrs = LinearInterp(
                np.array([solution.mNrmMin, solution.mNrmMin + 1.0]),
                np.array([0.0, solution.vFuncNvrsSlope]),
            )
            vFunc = ValueFuncCRRA(vFuncNvrs, self.CRRA)
            vPfunc = MargValueFuncCRRA(cFunc, self.CRRA)

            consumer_solution = ConsumerSolution(
                cFunc=cFunc,
                vFunc=vFunc,
                vPfunc=vPfunc,
                mNrmMin=solution.mNrmMin,
                hNrm=solution.hNrm,
                MPCmin=solution.MPCmin,
                MPCmax=solution.MPCmax,
            )

            Ex_IncNext = 1.0  # Perfect foresight income of 1

            # Add mNrmStE to the solution and return it
            consumer_solution.mNrmStE = _add_mNrmStENumba(
                self.Rfree,
                self.PermGroFac[i],
                solution.mNrm,
                solution.cNrm,
                solution.mNrmMin,
                Ex_IncNext,
                _find_mNrmStE,
            )

            self.solution[i] = consumer_solution
    def update_solution_terminal(self):
        """
        Solves the terminal period of the portfolio choice problem.  The solution is
        trivial, as usual: consume all market resources, and put nothing in the risky
        asset (because you have nothing anyway).

        Parameters
        ----------
        None

        Returns
        -------
        None
        """
        # Consume all market resources: c_T = m_T
        cFuncAdj_terminal = IdentityFunction()
        cFuncFxd_terminal = IdentityFunction(i_dim=0, n_dims=2)

        # Risky share is irrelevant-- no end-of-period assets; set to zero
        ShareFuncAdj_terminal = ConstantFunction(0.0)
        ShareFuncFxd_terminal = IdentityFunction(i_dim=1, n_dims=2)

        # Value function is simply utility from consuming market resources
        vFuncAdj_terminal = ValueFuncCRRA(cFuncAdj_terminal, self.CRRA)
        vFuncFxd_terminal = ValueFuncCRRA(cFuncFxd_terminal, self.CRRA)

        # Marginal value of market resources is marg utility at the consumption function
        vPfuncAdj_terminal = MargValueFuncCRRA(cFuncAdj_terminal, self.CRRA)
        dvdmFuncFxd_terminal = MargValueFuncCRRA(cFuncFxd_terminal, self.CRRA)
        dvdsFuncFxd_terminal = ConstantFunction(
            0.0)  # No future, no marg value of Share

        # Construct the terminal period solution
        self.solution_terminal = PortfolioSolution(
            cFuncAdj=cFuncAdj_terminal,
            ShareFuncAdj=ShareFuncAdj_terminal,
            vFuncAdj=vFuncAdj_terminal,
            vPfuncAdj=vPfuncAdj_terminal,
            cFuncFxd=cFuncFxd_terminal,
            ShareFuncFxd=ShareFuncFxd_terminal,
            vFuncFxd=vFuncFxd_terminal,
            dvdmFuncFxd=dvdmFuncFxd_terminal,
            dvdsFuncFxd=dvdsFuncFxd_terminal,
        )
    def use_points_for_interpolation(self, cNrm, mNrm, interpolator):
        """
        Make a basic solution object with a consumption function and marginal
        value function (unconditional on the preference shock).

        Parameters
        ----------
        cNrm : np.array
            Consumption points for interpolation.
        mNrm : np.array
            Corresponding market resource points for interpolation.
        interpolator : function
            A function that constructs and returns a consumption function.

        Returns
        -------
        solution_now : ConsumerSolution
            The solution to this period's consumption-saving problem, with a
            consumption function, marginal value function, and minimum m.
        """
        # Make the preference-shock specific consumption functions
        PrefShkCount = self.PrefShkVals.size
        cFunc_list = []
        for j in range(PrefShkCount):
            MPCmin_j = self.MPCminNow * self.PrefShkVals[j]**(1.0 / self.CRRA)
            cFunc_this_shock = LowerEnvelope(
                LinearInterp(
                    mNrm[j, :],
                    cNrm[j, :],
                    intercept_limit=self.hNrmNow * MPCmin_j,
                    slope_limit=MPCmin_j,
                ),
                self.cFuncNowCnst,
            )
            cFunc_list.append(cFunc_this_shock)

        # Combine the list of consumption functions into a single interpolation
        cFuncNow = LinearInterpOnInterp1D(cFunc_list, self.PrefShkVals)

        # Make the ex ante marginal value function (before the preference shock)
        m_grid = self.aXtraGrid + self.mNrmMinNow
        vP_vec = np.zeros_like(m_grid)
        for j in range(
                PrefShkCount):  # numeric integration over the preference shock
            vP_vec += (self.uP(cFunc_list[j](m_grid)) * self.PrefShkPrbs[j] *
                       self.PrefShkVals[j])
        vPnvrs_vec = self.uPinv(vP_vec)
        vPfuncNow = MargValueFuncCRRA(LinearInterp(m_grid, vPnvrs_vec),
                                      self.CRRA)

        # Store the results in a solution object and return it
        solution_now = ConsumerSolution(cFunc=cFuncNow,
                                        vPfunc=vPfuncNow,
                                        mNrmMin=self.mNrmMinNow)
        return solution_now
Ejemplo n.º 4
0
    def update_solution_terminal(self):
        """
        Update the terminal period solution.  This method should be run when a
        new AgentType is created or when CRRA changes.
        """

        self.solution_terminal_cs = ConsumerSolution(
            cFunc=self.cFunc_terminal_,
            vFunc=ValueFuncCRRA(self.cFunc_terminal_, self.CRRA),
            vPfunc=MargValueFuncCRRA(self.cFunc_terminal_, self.CRRA),
            vPPfunc=MargMargValueFuncCRRA(self.cFunc_terminal_, self.CRRA),
            mNrmMin=0.0,
            hNrm=0.0,
            MPCmin=1.0,
            MPCmax=1.0,
        )
    def make_vPfunc(self, cFunc):
        """
        Constructs the marginal value function for this period.

        Parameters
        ----------
        cFunc : function
            Consumption function this period, defined over market resources and
            persistent income level.

        Returns
        -------
        vPfunc : function
            Marginal value (of market resources) function for this period.
        """
        vPfunc = MargValueFuncCRRA(cFunc, self.CRRA)
        return vPfunc
Ejemplo n.º 6
0
    def make_EndOfPrdvPfuncCond(self):
        """
        Construct the end-of-period marginal value function conditional on next
        period's state.

        Parameters
        ----------
        None

        Returns
        -------
        EndofPrdvPfunc_cond : MargValueFuncCRRA
            The end-of-period marginal value function conditional on a particular
            state occuring in the succeeding period.
        """
        # Get data to construct the end-of-period marginal value function (conditional on next state)
        self.aNrm_cond = self.prepare_to_calc_EndOfPrdvP()
        self.EndOfPrdvP_cond = self.calc_EndOfPrdvPcond()
        EndOfPrdvPnvrs_cond = self.uPinv(
            self.EndOfPrdvP_cond
        )  # "decurved" marginal value
        if self.CubicBool:
            EndOfPrdvPP_cond = self.calc_EndOfPrdvPP()
            EndOfPrdvPnvrsP_cond = EndOfPrdvPP_cond * self.uPinvP(
                self.EndOfPrdvP_cond
            )  # "decurved" marginal marginal value

        # Construct the end-of-period marginal value function conditional on the next state.
        if self.CubicBool:
            EndOfPrdvPnvrsFunc_cond = CubicInterp(
                self.aNrm_cond,
                EndOfPrdvPnvrs_cond,
                EndOfPrdvPnvrsP_cond,
                lower_extrap=True,
            )
        else:
            EndOfPrdvPnvrsFunc_cond = LinearInterp(
                self.aNrm_cond, EndOfPrdvPnvrs_cond, lower_extrap=True
            )
        EndofPrdvPfunc_cond = MargValueFuncCRRA(
            EndOfPrdvPnvrsFunc_cond, self.CRRA
        )  # "recurve" the interpolated marginal value function
        return EndofPrdvPfunc_cond
    def update_solution_terminal(self):
        """
        Update the terminal period solution.  This method should be run when a
        new AgentType is created or when CRRA changes.

        Parameters
        ----------
        None

        Returns
        -------
        None
        """
        self.solution_terminal.vFunc = ValueFuncCRRA(self.cFunc_terminal_,
                                                     self.CRRA)
        self.solution_terminal.vPfunc = MargValueFuncCRRA(
            self.cFunc_terminal_, self.CRRA)
        self.solution_terminal.vPPfunc = MargMargValueFuncCRRA(
            self.cFunc_terminal_, self.CRRA)
        self.solution_terminal.hNrm = 0.0  # Don't track normalized human wealth
        self.solution_terminal.hLvl = lambda p: np.zeros_like(p)
        # But do track absolute human wealth by persistent income
        self.solution_terminal.mLvlMin = lambda p: np.zeros_like(p)
def solveConsPortfolio(
    solution_next,
    ShockDstn,
    IncShkDstn,
    RiskyDstn,
    LivPrb,
    DiscFac,
    CRRA,
    Rfree,
    PermGroFac,
    BoroCnstArt,
    aXtraGrid,
    ShareGrid,
    vFuncBool,
    AdjustPrb,
    DiscreteShareBool,
    ShareLimit,
    IndepDstnBool,
):
    """
    Solve the one period problem for a portfolio-choice consumer.

    Parameters
    ----------
    solution_next : PortfolioSolution
        Solution to next period's problem.
    ShockDstn : [np.array]
        List with four arrays: discrete probabilities, permanent income shocks,
        transitory income shocks, and risky returns.  This is only used if the
        input IndepDstnBool is False, indicating that income and return distributions
        can't be assumed to be independent.
    IncShkDstn : distribution.Distribution
        Discrete distribution of permanent income shocks
        and transitory income shocks.  This is only used if the input IndepDsntBool
        is True, indicating that income and return distributions are independent.
    RiskyDstn : [np.array]
        List with two arrays: discrete probabilities and risky asset returns. This
        is only used if the input IndepDstnBool is True, indicating that income
        and return distributions are independent.
    LivPrb : float
        Survival probability; likelihood of being alive at the beginning of
        the succeeding period.
    DiscFac : float
        Intertemporal discount factor for future utility.
    CRRA : float
        Coefficient of relative risk aversion.
    Rfree : float
        Risk free interest factor on end-of-period assets.
    PermGroFac : float
        Expected permanent income growth factor at the end of this period.
    BoroCnstArt: float or None
        Borrowing constraint for the minimum allowable assets to end the
        period with.  In this model, it is *required* to be zero.
    aXtraGrid: np.array
        Array of "extra" end-of-period asset values-- assets above the
        absolute minimum acceptable level.
    ShareGrid : np.array
        Array of risky portfolio shares on which to define the interpolation
        of the consumption function when Share is fixed.
    vFuncBool: boolean
        An indicator for whether the value function should be computed and
        included in the reported solution.
    AdjustPrb : float
        Probability that the agent will be able to update his portfolio share.
    DiscreteShareBool : bool
        Indicator for whether risky portfolio share should be optimized on the
        continuous [0,1] interval using the FOC (False), or instead only selected
        from the discrete set of values in ShareGrid (True).  If True, then
        vFuncBool must also be True.
    ShareLimit : float
        Limiting lower bound of risky portfolio share as mNrm approaches infinity.
    IndepDstnBool : bool
        Indicator for whether the income and risky return distributions are in-
        dependent of each other, which can speed up the expectations step.

    Returns
    -------
    solution_now : PortfolioSolution
        The solution to the single period consumption-saving with portfolio choice
        problem.  Includes two consumption and risky share functions: one for when
        the agent can adjust his portfolio share (Adj) and when he can't (Fxd).
    """
    # Make sure the individual is liquidity constrained.  Allowing a consumer to
    # borrow *and* invest in an asset with unbounded (negative) returns is a bad mix.
    if BoroCnstArt != 0.0:
        raise ValueError("PortfolioConsumerType must have BoroCnstArt=0.0!")

    # Make sure that if risky portfolio share is optimized only discretely, then
    # the value function is also constructed (else this task would be impossible).
    if DiscreteShareBool and (not vFuncBool):
        raise ValueError(
            "PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!"
        )

    # Define temporary functions for utility and its derivative and inverse
    u = lambda x: utility(x, CRRA)
    uP = lambda x: utilityP(x, CRRA)
    uPinv = lambda x: utilityP_inv(x, CRRA)
    n = lambda x: utility_inv(x, CRRA)
    nP = lambda x: utility_invP(x, CRRA)

    # Unpack next period's solution
    vPfuncAdj_next = solution_next.vPfuncAdj
    dvdmFuncFxd_next = solution_next.dvdmFuncFxd
    dvdsFuncFxd_next = solution_next.dvdsFuncFxd
    vFuncAdj_next = solution_next.vFuncAdj
    vFuncFxd_next = solution_next.vFuncFxd

    # Major method fork: (in)dependent risky asset return and income distributions
    if IndepDstnBool:  # If the distributions ARE independent...
        # Unpack the shock distribution
        TranShks_next = IncShkDstn.X[1]
        Risky_next = RiskyDstn.X

        # Flag for whether the natural borrowing constraint is zero
        zero_bound = np.min(TranShks_next) == 0.0
        RiskyMax = np.max(Risky_next)

        # bNrm represents R*a, balances after asset return shocks but before income.
        # This just uses the highest risky return as a rough shifter for the aXtraGrid.
        if zero_bound:
            aNrmGrid = aXtraGrid
            bNrmGrid = np.insert(RiskyMax * aXtraGrid, 0,
                                 np.min(Risky_next) * aXtraGrid[0])
        else:
            # Add an asset point at exactly zero
            aNrmGrid = np.insert(aXtraGrid, 0, 0.0)
            bNrmGrid = RiskyMax * np.insert(aXtraGrid, 0, 0.0)

        # Get grid and shock sizes, for easier indexing
        aNrm_N = aNrmGrid.size
        bNrm_N = bNrmGrid.size
        Share_N = ShareGrid.size

        # Make tiled arrays to calculate future realizations of mNrm and Share when integrating over IncShkDstn
        bNrm_tiled, Share_tiled = np.meshgrid(bNrmGrid,
                                              ShareGrid,
                                              indexing="ij")

        # Calculate future realizations of market resources
        def m_nrm_next(shocks, b_nrm):
            return b_nrm / (shocks[0] * PermGroFac) + shocks[1]

        # Evaluate realizations of marginal value of market resources next period
        def dvdb_dist(shocks, b_nrm, Share_next):
            mNrm_next = m_nrm_next(shocks, b_nrm)

            dvdmAdj_next = vPfuncAdj_next(mNrm_next)
            if AdjustPrb < 1.0:
                dvdmFxd_next = dvdmFuncFxd_next(mNrm_next, Share_next)
                # Combine by adjustment probability
                dvdm_next = AdjustPrb * dvdmAdj_next + (
                    1.0 - AdjustPrb) * dvdmFxd_next
            else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
                dvdm_next = dvdmAdj_next

            return (shocks[0] * PermGroFac)**(-CRRA) * dvdm_next

        # Evaluate realizations of marginal value of risky share next period
        def dvds_dist(shocks, b_nrm, Share_next):
            mNrm_next = m_nrm_next(shocks, b_nrm)
            # No marginal value of Share if it's a free choice!
            dvdsAdj_next = np.zeros_like(mNrm_next)
            if AdjustPrb < 1.0:
                dvdsFxd_next = dvdsFuncFxd_next(mNrm_next, Share_next)
                # Combine by adjustment probability
                dvds_next = AdjustPrb * dvdsAdj_next + (
                    1.0 - AdjustPrb) * dvdsFxd_next
            else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
                dvds_next = dvdsAdj_next

            return (shocks[0] * PermGroFac)**(1.0 - CRRA) * dvds_next

        # If the value function has been requested, evaluate realizations of value
        def v_intermed_dist(shocks, b_nrm, Share_next):
            mNrm_next = m_nrm_next(shocks, b_nrm)

            vAdj_next = vFuncAdj_next(mNrm_next)
            if AdjustPrb < 1.0:
                vFxd_next = vFuncFxd_next(mNrm_next, Share_next)
                # Combine by adjustment probability
                v_next = AdjustPrb * vAdj_next + (1.0 - AdjustPrb) * vFxd_next
            else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
                v_next = vAdj_next

            return (shocks[0] * PermGroFac)**(1.0 - CRRA) * v_next

        # Calculate intermediate marginal value of bank balances by taking expectations over income shocks
        dvdb_intermed = calc_expectation(IncShkDstn, dvdb_dist, bNrm_tiled,
                                         Share_tiled)
        # calc_expectation returns one additional "empty" dimension, remove it
        # this line can be deleted when calc_expectation is fixed
        dvdb_intermed = dvdb_intermed[:, :, 0]
        dvdbNvrs_intermed = uPinv(dvdb_intermed)
        dvdbNvrsFunc_intermed = BilinearInterp(dvdbNvrs_intermed, bNrmGrid,
                                               ShareGrid)
        dvdbFunc_intermed = MargValueFuncCRRA(dvdbNvrsFunc_intermed, CRRA)

        # Calculate intermediate value by taking expectations over income shocks
        if vFuncBool:
            v_intermed = calc_expectation(IncShkDstn, v_intermed_dist,
                                          bNrm_tiled, Share_tiled)
            # calc_expectation returns one additional "empty" dimension, remove it
            # this line can be deleted when calc_expectation is fixed
            v_intermed = v_intermed[:, :, 0]
            vNvrs_intermed = n(v_intermed)
            vNvrsFunc_intermed = BilinearInterp(vNvrs_intermed, bNrmGrid,
                                                ShareGrid)
            vFunc_intermed = ValueFuncCRRA(vNvrsFunc_intermed, CRRA)

        # Calculate intermediate marginal value of risky portfolio share by taking expectations
        dvds_intermed = calc_expectation(IncShkDstn, dvds_dist, bNrm_tiled,
                                         Share_tiled)
        # calc_expectation returns one additional "empty" dimension, remove it
        # this line can be deleted when calc_expectation is fixed
        dvds_intermed = dvds_intermed[:, :, 0]
        dvdsFunc_intermed = BilinearInterp(dvds_intermed, bNrmGrid, ShareGrid)

        # Make tiled arrays to calculate future realizations of bNrm and Share when integrating over RiskyDstn
        aNrm_tiled, Share_tiled = np.meshgrid(aNrmGrid,
                                              ShareGrid,
                                              indexing="ij")

        # Evaluate realizations of value and marginal value after asset returns are realized

        def EndOfPrddvda_dist(shock, a_nrm, Share_next):
            # Calculate future realizations of bank balances bNrm
            Rxs = shock - Rfree
            Rport = Rfree + Share_next * Rxs
            b_nrm_next = Rport * a_nrm

            return Rport * dvdbFunc_intermed(b_nrm_next, Share_next)

        def EndOfPrdv_dist(shock, a_nrm, Share_next):
            # Calculate future realizations of bank balances bNrm
            Rxs = shock - Rfree
            Rport = Rfree + Share_next * Rxs
            b_nrm_next = Rport * a_nrm

            return vFunc_intermed(b_nrm_next, Share_next)

        def EndOfPrddvds_dist(shock, a_nrm, Share_next):
            # Calculate future realizations of bank balances bNrm
            Rxs = shock - Rfree
            Rport = Rfree + Share_next * Rxs
            b_nrm_next = Rport * a_nrm

            return Rxs * a_nrm * dvdbFunc_intermed(
                b_nrm_next, Share_next) + dvdsFunc_intermed(
                    b_nrm_next, Share_next)

        # Calculate end-of-period marginal value of assets by taking expectations
        EndOfPrddvda = (DiscFac * LivPrb * calc_expectation(
            RiskyDstn, EndOfPrddvda_dist, aNrm_tiled, Share_tiled))
        # calc_expectation returns one additional "empty" dimension, remove it
        # this line can be deleted when calc_expectation is fixed
        EndOfPrddvda = EndOfPrddvda[:, :, 0]
        EndOfPrddvdaNvrs = uPinv(EndOfPrddvda)

        # Calculate end-of-period value by taking expectations
        if vFuncBool:
            EndOfPrdv = (DiscFac * LivPrb * calc_expectation(
                RiskyDstn, EndOfPrdv_dist, aNrm_tiled, Share_tiled))
            # calc_expectation returns one additional "empty" dimension, remove it
            # this line can be deleted when calc_expectation is fixed
            EndOfPrdv = EndOfPrdv[:, :, 0]
            EndOfPrdvNvrs = n(EndOfPrdv)

        # Calculate end-of-period marginal value of risky portfolio share by taking expectations
        EndOfPrddvds = (DiscFac * LivPrb * calc_expectation(
            RiskyDstn, EndOfPrddvds_dist, aNrm_tiled, Share_tiled))
        # calc_expectation returns one additional "empty" dimension, remove it
        # this line can be deleted when calc_expectation is fixed
        EndOfPrddvds = EndOfPrddvds[:, :, 0]

    else:  # If the distributions are NOT independent...
        # Unpack the shock distribution
        ShockPrbs_next = ShockDstn[0]
        PermShks_next = ShockDstn[1]
        TranShks_next = ShockDstn[2]
        Risky_next = ShockDstn[3]
        # Flag for whether the natural borrowing constraint is zero
        zero_bound = np.min(TranShks_next) == 0.0

        # Make tiled arrays to calculate future realizations of mNrm and Share; dimension order: mNrm, Share, shock
        if zero_bound:
            aNrmGrid = aXtraGrid
        else:
            # Add an asset point at exactly zero
            aNrmGrid = np.insert(aXtraGrid, 0, 0.0)

        aNrm_N = aNrmGrid.size
        Share_N = ShareGrid.size
        Shock_N = ShockPrbs_next.size

        aNrm_tiled = np.tile(np.reshape(aNrmGrid, (aNrm_N, 1, 1)),
                             (1, Share_N, Shock_N))
        Share_tiled = np.tile(np.reshape(ShareGrid, (1, Share_N, 1)),
                              (aNrm_N, 1, Shock_N))
        ShockPrbs_tiled = np.tile(np.reshape(ShockPrbs_next, (1, 1, Shock_N)),
                                  (aNrm_N, Share_N, 1))
        PermShks_tiled = np.tile(np.reshape(PermShks_next, (1, 1, Shock_N)),
                                 (aNrm_N, Share_N, 1))
        TranShks_tiled = np.tile(np.reshape(TranShks_next, (1, 1, Shock_N)),
                                 (aNrm_N, Share_N, 1))
        Risky_tiled = np.tile(np.reshape(Risky_next, (1, 1, Shock_N)),
                              (aNrm_N, Share_N, 1))

        # Calculate future realizations of market resources
        Rport = (1.0 - Share_tiled) * Rfree + Share_tiled * Risky_tiled
        mNrm_next = Rport * aNrm_tiled / (PermShks_tiled *
                                          PermGroFac) + TranShks_tiled
        Share_next = Share_tiled

        # Evaluate realizations of marginal value of market resources next period
        dvdmAdj_next = vPfuncAdj_next(mNrm_next)
        if AdjustPrb < 1.0:
            dvdmFxd_next = dvdmFuncFxd_next(mNrm_next, Share_next)
            # Combine by adjustment probability
            dvdm_next = AdjustPrb * dvdmAdj_next + (1.0 -
                                                    AdjustPrb) * dvdmFxd_next
        else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
            dvdm_next = dvdmAdj_next

        # Evaluate realizations of marginal value of risky share next period
        # No marginal value of Share if it's a free choice!
        dvdsAdj_next = np.zeros_like(mNrm_next)
        if AdjustPrb < 1.0:
            dvdsFxd_next = dvdsFuncFxd_next(mNrm_next, Share_next)
            # Combine by adjustment probability
            dvds_next = AdjustPrb * dvdsAdj_next + (1.0 -
                                                    AdjustPrb) * dvdsFxd_next
        else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
            dvds_next = dvdsAdj_next

        # If the value function has been requested, evaluate realizations of value
        if vFuncBool:
            vAdj_next = vFuncAdj_next(mNrm_next)
            if AdjustPrb < 1.0:
                vFxd_next = vFuncFxd_next(mNrm_next, Share_next)
                v_next = AdjustPrb * vAdj_next + (1.0 - AdjustPrb) * vFxd_next
            else:  # Don't bother evaluating if there's no chance that portfolio share is fixed
                v_next = vAdj_next
        else:
            v_next = np.zeros_like(dvdm_next)  # Trivial array

        # Calculate end-of-period marginal value of assets by taking expectations
        temp_fac_A = uP(PermShks_tiled *
                        PermGroFac)  # Will use this in a couple places
        EndOfPrddvda = (
            DiscFac * LivPrb *
            np.sum(ShockPrbs_tiled * Rport * temp_fac_A * dvdm_next, axis=2))
        EndOfPrddvdaNvrs = uPinv(EndOfPrddvda)

        # Calculate end-of-period value by taking expectations
        # Will use this below
        temp_fac_B = (PermShks_tiled * PermGroFac)**(1.0 - CRRA)
        if vFuncBool:
            EndOfPrdv = (DiscFac * LivPrb *
                         np.sum(ShockPrbs_tiled * temp_fac_B * v_next, axis=2))
            EndOfPrdvNvrs = n(EndOfPrdv)

        # Calculate end-of-period marginal value of risky portfolio share by taking expectations
        Rxs = Risky_tiled - Rfree
        EndOfPrddvds = (DiscFac * LivPrb * np.sum(
            ShockPrbs_tiled * (Rxs * aNrm_tiled * temp_fac_A * dvdm_next +
                               temp_fac_B * dvds_next),
            axis=2,
        ))

    # Major method fork: discrete vs continuous choice of risky portfolio share
    if DiscreteShareBool:  # Optimization of Share on the discrete set ShareGrid
        opt_idx = np.argmax(EndOfPrdv, axis=1)
        Share_now = ShareGrid[
            opt_idx]  # Best portfolio share is one with highest value
        # Take cNrm at that index as well
        cNrmAdj_now = EndOfPrddvdaNvrs[np.arange(aNrm_N), opt_idx]
        if not zero_bound:
            Share_now[
                0] = 1.0  # aNrm=0, so there's no way to "optimize" the portfolio
            # Consumption when aNrm=0 does not depend on Share
            cNrmAdj_now[0] = EndOfPrddvdaNvrs[0, -1]

    else:  # Optimization of Share on continuous interval [0,1]
        # For values of aNrm at which the agent wants to put more than 100% into risky asset, constrain them
        FOC_s = EndOfPrddvds
        # Initialize to putting everything in safe asset
        Share_now = np.zeros_like(aNrmGrid)
        cNrmAdj_now = np.zeros_like(aNrmGrid)
        # If agent wants to put more than 100% into risky asset, he is constrained
        constrained_top = FOC_s[:, -1] > 0.0
        # Likewise if he wants to put less than 0% into risky asset
        constrained_bot = FOC_s[:, 0] < 0.0
        Share_now[constrained_top] = 1.0
        if not zero_bound:
            Share_now[
                0] = 1.0  # aNrm=0, so there's no way to "optimize" the portfolio
            # Consumption when aNrm=0 does not depend on Share
            cNrmAdj_now[0] = EndOfPrddvdaNvrs[0, -1]
            # Mark as constrained so that there is no attempt at optimization
            constrained_top[0] = True

        # Get consumption when share-constrained
        cNrmAdj_now[constrained_top] = EndOfPrddvdaNvrs[constrained_top, -1]
        cNrmAdj_now[constrained_bot] = EndOfPrddvdaNvrs[constrained_bot, 0]
        # For each value of aNrm, find the value of Share such that FOC-Share == 0.
        # This loop can probably be eliminated, but it's such a small step that it won't speed things up much.
        crossing = np.logical_and(FOC_s[:, 1:] <= 0.0, FOC_s[:, :-1] >= 0.0)
        for j in range(aNrm_N):
            if not (constrained_top[j] or constrained_bot[j]):
                idx = np.argwhere(crossing[j, :])[0][0]
                bot_s = ShareGrid[idx]
                top_s = ShareGrid[idx + 1]
                bot_f = FOC_s[j, idx]
                top_f = FOC_s[j, idx + 1]
                bot_c = EndOfPrddvdaNvrs[j, idx]
                top_c = EndOfPrddvdaNvrs[j, idx + 1]
                alpha = 1.0 - top_f / (top_f - bot_f)
                Share_now[j] = (1.0 - alpha) * bot_s + alpha * top_s
                cNrmAdj_now[j] = (1.0 - alpha) * bot_c + alpha * top_c

    # Calculate the endogenous mNrm gridpoints when the agent adjusts his portfolio
    mNrmAdj_now = aNrmGrid + cNrmAdj_now

    # This is a point at which (a,c,share) have consistent length. Take the
    # snapshot for storing the grid and values in the solution.
    save_points = {
        "a": deepcopy(aNrmGrid),
        "eop_dvda_adj": uP(cNrmAdj_now),
        "share_adj": deepcopy(Share_now),
        "share_grid": deepcopy(ShareGrid),
        "eop_dvda_fxd": uP(EndOfPrddvda),
    }

    # Construct the risky share function when the agent can adjust
    if DiscreteShareBool:
        mNrmAdj_mid = (mNrmAdj_now[1:] + mNrmAdj_now[:-1]) / 2
        mNrmAdj_plus = mNrmAdj_mid * (1.0 + 1e-12)
        mNrmAdj_comb = (np.transpose(np.vstack(
            (mNrmAdj_mid, mNrmAdj_plus)))).flatten()
        mNrmAdj_comb = np.append(np.insert(mNrmAdj_comb, 0, 0.0),
                                 mNrmAdj_now[-1])
        Share_comb = (np.transpose(np.vstack(
            (Share_now, Share_now)))).flatten()
        ShareFuncAdj_now = LinearInterp(mNrmAdj_comb, Share_comb)
    else:
        if zero_bound:
            Share_lower_bound = ShareLimit
        else:
            Share_lower_bound = 1.0
        Share_now = np.insert(Share_now, 0, Share_lower_bound)
        ShareFuncAdj_now = LinearInterp(
            np.insert(mNrmAdj_now, 0, 0.0),
            Share_now,
            intercept_limit=ShareLimit,
            slope_limit=0.0,
        )

    # Construct the consumption function when the agent can adjust
    cNrmAdj_now = np.insert(cNrmAdj_now, 0, 0.0)
    cFuncAdj_now = LinearInterp(np.insert(mNrmAdj_now, 0, 0.0), cNrmAdj_now)

    # Construct the marginal value (of mNrm) function when the agent can adjust
    vPfuncAdj_now = MargValueFuncCRRA(cFuncAdj_now, CRRA)

    # Construct the consumption function when the agent *can't* adjust the risky share, as well
    # as the marginal value of Share function
    cFuncFxd_by_Share = []
    dvdsFuncFxd_by_Share = []
    for j in range(Share_N):
        cNrmFxd_temp = EndOfPrddvdaNvrs[:, j]
        mNrmFxd_temp = aNrmGrid + cNrmFxd_temp
        cFuncFxd_by_Share.append(
            LinearInterp(np.insert(mNrmFxd_temp, 0, 0.0),
                         np.insert(cNrmFxd_temp, 0, 0.0)))
        dvdsFuncFxd_by_Share.append(
            LinearInterp(
                np.insert(mNrmFxd_temp, 0, 0.0),
                np.insert(EndOfPrddvds[:, j], 0, EndOfPrddvds[0, j]),
            ))
    cFuncFxd_now = LinearInterpOnInterp1D(cFuncFxd_by_Share, ShareGrid)
    dvdsFuncFxd_now = LinearInterpOnInterp1D(dvdsFuncFxd_by_Share, ShareGrid)

    # The share function when the agent can't adjust his portfolio is trivial
    ShareFuncFxd_now = IdentityFunction(i_dim=1, n_dims=2)

    # Construct the marginal value of mNrm function when the agent can't adjust his share
    dvdmFuncFxd_now = MargValueFuncCRRA(cFuncFxd_now, CRRA)

    # If the value function has been requested, construct it now
    if vFuncBool:
        # First, make an end-of-period value function over aNrm and Share
        EndOfPrdvNvrsFunc = BilinearInterp(EndOfPrdvNvrs, aNrmGrid, ShareGrid)
        EndOfPrdvFunc = ValueFuncCRRA(EndOfPrdvNvrsFunc, CRRA)

        # Construct the value function when the agent can adjust his portfolio
        mNrm_temp = aXtraGrid  # Just use aXtraGrid as our grid of mNrm values
        cNrm_temp = cFuncAdj_now(mNrm_temp)
        aNrm_temp = mNrm_temp - cNrm_temp
        Share_temp = ShareFuncAdj_now(mNrm_temp)
        v_temp = u(cNrm_temp) + EndOfPrdvFunc(aNrm_temp, Share_temp)
        vNvrs_temp = n(v_temp)
        vNvrsP_temp = uP(cNrm_temp) * nP(v_temp)
        vNvrsFuncAdj = CubicInterp(
            np.insert(mNrm_temp, 0, 0.0),  # x_list
            np.insert(vNvrs_temp, 0, 0.0),  # f_list
            np.insert(vNvrsP_temp, 0, vNvrsP_temp[0]),  # dfdx_list
        )
        # Re-curve the pseudo-inverse value function
        vFuncAdj_now = ValueFuncCRRA(vNvrsFuncAdj, CRRA)

        # Construct the value function when the agent *can't* adjust his portfolio
        mNrm_temp = np.tile(np.reshape(aXtraGrid, (aXtraGrid.size, 1)),
                            (1, Share_N))
        Share_temp = np.tile(np.reshape(ShareGrid, (1, Share_N)),
                             (aXtraGrid.size, 1))
        cNrm_temp = cFuncFxd_now(mNrm_temp, Share_temp)
        aNrm_temp = mNrm_temp - cNrm_temp
        v_temp = u(cNrm_temp) + EndOfPrdvFunc(aNrm_temp, Share_temp)
        vNvrs_temp = n(v_temp)
        vNvrsP_temp = uP(cNrm_temp) * nP(v_temp)
        vNvrsFuncFxd_by_Share = []
        for j in range(Share_N):
            vNvrsFuncFxd_by_Share.append(
                CubicInterp(
                    np.insert(mNrm_temp[:, 0], 0, 0.0),  # x_list
                    np.insert(vNvrs_temp[:, j], 0, 0.0),  # f_list
                    np.insert(vNvrsP_temp[:, j], 0,
                              vNvrsP_temp[j, 0]),  # dfdx_list
                ))
        vNvrsFuncFxd = LinearInterpOnInterp1D(vNvrsFuncFxd_by_Share, ShareGrid)
        vFuncFxd_now = ValueFuncCRRA(vNvrsFuncFxd, CRRA)

    else:  # If vFuncBool is False, fill in dummy values
        vFuncAdj_now = None
        vFuncFxd_now = None

    return PortfolioSolution(
        cFuncAdj=cFuncAdj_now,
        ShareFuncAdj=ShareFuncAdj_now,
        vPfuncAdj=vPfuncAdj_now,
        vFuncAdj=vFuncAdj_now,
        cFuncFxd=cFuncFxd_now,
        ShareFuncFxd=ShareFuncFxd_now,
        dvdmFuncFxd=dvdmFuncFxd_now,
        dvdsFuncFxd=dvdsFuncFxd_now,
        vFuncFxd=vFuncFxd_now,
        aGrid=save_points["a"],
        Share_adj=save_points["share_adj"],
        EndOfPrddvda_adj=save_points["eop_dvda_adj"],
        ShareGrid=save_points["share_grid"],
        EndOfPrddvda_fxd=save_points["eop_dvda_fxd"],
        AdjPrb=AdjustPrb,
    )
Ejemplo n.º 9
0
    def post_solve(self):
        self.solution_fast = deepcopy(self.solution)

        if self.cycles == 0:
            cycles = 1
        else:
            cycles = self.cycles
            self.solution[-1] = self.solution_terminal_cs

        for i in range(cycles):
            for j in range(self.T_cycle):
                solution = self.solution[i * self.T_cycle + j]

                # Define the borrowing constraint (limiting consumption function)
                cFuncNowCnst = LinearInterp(
                    np.array([solution.mNrmMin, solution.mNrmMin + 1]),
                    np.array([0.0, 1.0]),
                )

                """
                Constructs a basic solution for this period, including the consumption
                function and marginal value function.
                """

                if self.CubicBool:
                    # Makes a cubic spline interpolation of the unconstrained consumption
                    # function for this period.
                    cFuncNowUnc = CubicInterp(
                        solution.mNrm,
                        solution.cNrm,
                        solution.MPC,
                        solution.cFuncLimitIntercept,
                        solution.cFuncLimitSlope,
                    )
                else:
                    # Makes a linear interpolation to represent the (unconstrained) consumption function.
                    # Construct the unconstrained consumption function
                    cFuncNowUnc = LinearInterp(
                        solution.mNrm,
                        solution.cNrm,
                        solution.cFuncLimitIntercept,
                        solution.cFuncLimitSlope,
                    )

                # Combine the constrained and unconstrained functions into the true consumption function
                cFuncNow = LowerEnvelope(cFuncNowUnc, cFuncNowCnst)

                # Make the marginal value function and the marginal marginal value function
                vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA)

                # Pack up the solution and return it
                consumer_solution = ConsumerSolution(
                    cFunc=cFuncNow,
                    vPfunc=vPfuncNow,
                    mNrmMin=solution.mNrmMin,
                    hNrm=solution.hNrm,
                    MPCmin=solution.MPCmin,
                    MPCmax=solution.MPCmax,
                )

                if self.vFuncBool:
                    vNvrsFuncNow = CubicInterp(
                        solution.mNrmGrid,
                        solution.vNvrs,
                        solution.vNvrsP,
                        solution.MPCminNvrs * solution.hNrm,
                        solution.MPCminNvrs,
                    )
                    vFuncNow = ValueFuncCRRA(vNvrsFuncNow, self.CRRA)

                    consumer_solution.vFunc = vFuncNow

                if self.CubicBool or self.vFuncBool:
                    _searchFunc = (
                        _find_mNrmStECubic if self.CubicBool else _find_mNrmStELinear
                    )
                    # Add mNrmStE to the solution and return it
                    consumer_solution.mNrmStE = _add_mNrmStEIndNumba(
                        self.PermGroFac[j],
                        self.Rfree,
                        solution.Ex_IncNext,
                        solution.mNrmMin,
                        solution.mNrm,
                        solution.cNrm,
                        solution.MPC,
                        solution.MPCmin,
                        solution.hNrm,
                        _searchFunc,
                    )

                self.solution[i * self.T_cycle + j] = consumer_solution
Ejemplo n.º 10
0
    def make_solution(self, cNrm, mNrm):
        """
        Construct an object representing the solution to this period's problem.

        Parameters
        ----------
        cNrm : np.array
            Array of normalized consumption values for interpolation.  Each row
            corresponds to a Markov state for this period.
        mNrm : np.array
            Array of normalized market resource values for interpolation.  Each
            row corresponds to a Markov state for this period.

        Returns
        -------
        solution : ConsumerSolution
            The solution to the single period consumption-saving problem. Includes
            a consumption function cFunc (using cubic or linear splines), a marg-
            inal value function vPfunc, a minimum acceptable level of normalized
            market resources mNrmMin, normalized human wealth hNrm, and bounding
            MPCs MPCmin and MPCmax.  It might also have a value function vFunc
            and marginal marginal value function vPPfunc.  All of these attributes
            are lists or arrays, with elements corresponding to the current
            Markov state.  E.g. solution.cFunc[0] is the consumption function
            when in the i=0 Markov state this period.
        """
        solution = (
            ConsumerSolution()
        )  # An empty solution to which we'll add state-conditional solutions
        # Calculate the MPC at each market resource gridpoint in each state (if desired)
        if self.CubicBool:
            dcda = self.EndOfPrdvPP / self.uPP(np.array(self.cNrmNow))
            MPC = dcda / (dcda + 1.0)
            self.MPC_temp = np.hstack(
                (np.reshape(self.MPCmaxNow, (self.StateCount, 1)), MPC)
            )
            interpfunc = self.make_cubic_cFunc
        else:
            interpfunc = self.make_linear_cFunc

        # Loop through each current period state and add its solution to the overall solution
        for i in range(self.StateCount):
            # Set current-period-conditional human wealth and MPC bounds
            self.hNrmNow_j = self.hNrmNow[i]
            self.MPCminNow_j = self.MPCminNow[i]
            if self.CubicBool:
                self.MPC_temp_j = self.MPC_temp[i, :]

            # Construct the consumption function by combining the constrained and unconstrained portions
            self.cFuncNowCnst = LinearInterp(
                [self.mNrmMin_list[i], self.mNrmMin_list[i] + 1.0], [0.0, 1.0]
            )
            cFuncNowUnc = interpfunc(mNrm[i, :], cNrm[i, :])
            cFuncNow = LowerEnvelope(cFuncNowUnc, self.cFuncNowCnst)

            # Make the marginal value function and pack up the current-state-conditional solution
            vPfuncNow = MargValueFuncCRRA(cFuncNow, self.CRRA)
            solution_cond = ConsumerSolution(
                cFunc=cFuncNow, vPfunc=vPfuncNow, mNrmMin=self.mNrmMinNow
            )
            if (
                self.CubicBool
            ):  # Add the state-conditional marginal marginal value function (if desired)
                solution_cond = self.add_vPPfunc(solution_cond)

            # Add the current-state-conditional solution to the overall period solution
            solution.append_solution(solution_cond)

        # Add the lower bounds of market resources, MPC limits, human resources,
        # and the value functions to the overall solution
        solution.mNrmMin = self.mNrmMin_list
        solution = self.add_MPC_and_human_wealth(solution)
        if self.vFuncBool:
            vFuncNow = self.make_vFunc(solution)
            solution.vFunc = vFuncNow

        # Return the overall solution to this period
        return solution
Ejemplo n.º 11
0
def solve_ConsLaborIntMarg(
    solution_next,
    PermShkDstn,
    TranShkDstn,
    LivPrb,
    DiscFac,
    CRRA,
    Rfree,
    PermGroFac,
    BoroCnstArt,
    aXtraGrid,
    TranShkGrid,
    vFuncBool,
    CubicBool,
    WageRte,
    LbrCost,
):
    """
    Solves one period of the consumption-saving model with endogenous labor supply
    on the intensive margin by using the endogenous grid method to invert the first
    order conditions for optimal composite consumption and between consumption and
    leisure, obviating any search for optimal controls.

    Parameters
    ----------
    solution_next : ConsumerLaborSolution
        The solution to the next period's problem; must have the attributes
        vPfunc and bNrmMinFunc representing marginal value of bank balances and
        minimum (normalized) bank balances as a function of the transitory shock.
    PermShkDstn: [np.array]
        Discrete distribution of permanent productivity shocks.
    TranShkDstn: [np.array]
        Discrete distribution of transitory productivity shocks.
    LivPrb : float
        Survival probability; likelihood of being alive at the beginning of
        the succeeding period.
    DiscFac : float
        Intertemporal discount factor.
    CRRA : float
        Coefficient of relative risk aversion over the composite good.
    Rfree : float
        Risk free interest rate on assets retained at the end of the period.
    PermGroFac : float
        Expected permanent income growth factor for next period.
    BoroCnstArt: float or None
        Borrowing constraint for the minimum allowable assets to end the
        period with.  Currently not handled, must be None.
    aXtraGrid: np.array
        Array of "extra" end-of-period asset values-- assets above the
        absolute minimum acceptable level.
    TranShkGrid: np.array
        Grid of transitory shock values to use as a state grid for interpolation.
    vFuncBool: boolean
        An indicator for whether the value function should be computed and
        included in the reported solution.  Not yet handled, must be False.
    CubicBool: boolean
        An indicator for whether the solver should use cubic or linear interpolation.
        Cubic interpolation is not yet handled, must be False.
    WageRte: float
        Wage rate per unit of labor supplied.
    LbrCost: float
        Cost parameter for supplying labor: u_t = U(x_t), x_t = c_t*z_t^LbrCost,
        where z_t is leisure = 1 - Lbr_t.

    Returns
    -------
    solution_now : ConsumerLaborSolution
        The solution to this period's problem, including a consumption function
        cFunc, a labor supply function LbrFunc, and a marginal value function vPfunc;
        each are defined over normalized bank balances and transitory prod shock.
        Also includes bNrmMinNow, the minimum permissible bank balances as a function
        of the transitory productivity shock.
    """
    # Make sure the inputs for this period are valid: CRRA > LbrCost/(1+LbrCost)
    # and CubicBool = False.  CRRA condition is met automatically when CRRA >= 1.
    frac = 1.0 / (1.0 + LbrCost)
    if CRRA <= frac * LbrCost:
        print(
            "Error: make sure CRRA coefficient is strictly greater than alpha/(1+alpha)."
        )
        sys.exit()
    if BoroCnstArt is not None:
        print(
            "Error: Model cannot handle artificial borrowing constraint yet. ")
        sys.exit()
    if vFuncBool or CubicBool is True:
        print("Error: Model cannot handle cubic interpolation yet.")
        sys.exit()

    # Unpack next period's solution and the productivity shock distribution, and define the inverse (marginal) utilty function
    vPfunc_next = solution_next.vPfunc
    TranShkPrbs = TranShkDstn.pmf
    TranShkVals = TranShkDstn.X.flatten()
    PermShkPrbs = PermShkDstn.pmf
    PermShkVals = PermShkDstn.X.flatten()
    TranShkCount = TranShkPrbs.size
    PermShkCount = PermShkPrbs.size
    uPinv = lambda X: CRRAutilityP_inv(X, gam=CRRA)

    # Make tiled versions of the grid of a_t values and the components of the shock distribution
    aXtraCount = aXtraGrid.size
    bNrmGrid = aXtraGrid  # Next period's bank balances before labor income

    # Replicated axtraGrid of b_t values (bNowGrid) for each transitory (productivity) shock
    bNrmGrid_rep = np.tile(np.reshape(bNrmGrid, (aXtraCount, 1)),
                           (1, TranShkCount))

    # Replicated transitory shock values for each a_t state
    TranShkVals_rep = np.tile(np.reshape(TranShkVals, (1, TranShkCount)),
                              (aXtraCount, 1))

    # Replicated transitory shock probabilities for each a_t state
    TranShkPrbs_rep = np.tile(np.reshape(TranShkPrbs, (1, TranShkCount)),
                              (aXtraCount, 1))

    # Construct a function that gives marginal value of next period's bank balances *just before* the transitory shock arrives
    # Next period's marginal value at every transitory shock and every bank balances gridpoint
    vPNext = vPfunc_next(bNrmGrid_rep, TranShkVals_rep)

    # Integrate out the transitory shocks (in TranShkVals direction) to get expected vP just before the transitory shock
    vPbarNext = np.sum(vPNext * TranShkPrbs_rep, axis=1)

    # Transformed marginal value through the inverse marginal utility function to "decurve" it
    vPbarNvrsNext = uPinv(vPbarNext)

    # Linear interpolation over b_{t+1}, adding a point at minimal value of b = 0.
    vPbarNvrsFuncNext = LinearInterp(np.insert(bNrmGrid, 0, 0.0),
                                     np.insert(vPbarNvrsNext, 0, 0.0))

    # "Recurve" the intermediate marginal value function through the marginal utility function
    vPbarFuncNext = MargValueFuncCRRA(vPbarNvrsFuncNext, CRRA)

    # Get next period's bank balances at each permanent shock from each end-of-period asset values
    # Replicated grid of a_t values for each permanent (productivity) shock
    aNrmGrid_rep = np.tile(np.reshape(aXtraGrid, (aXtraCount, 1)),
                           (1, PermShkCount))

    # Replicated permanent shock values for each a_t value
    PermShkVals_rep = np.tile(np.reshape(PermShkVals, (1, PermShkCount)),
                              (aXtraCount, 1))

    # Replicated permanent shock probabilities for each a_t value
    PermShkPrbs_rep = np.tile(np.reshape(PermShkPrbs, (1, PermShkCount)),
                              (aXtraCount, 1))
    bNrmNext = (Rfree / (PermGroFac * PermShkVals_rep)) * aNrmGrid_rep

    # Calculate marginal value of end-of-period assets at each a_t gridpoint
    # Get marginal value of bank balances next period at each shock
    vPbarNext = (PermGroFac *
                 PermShkVals_rep)**(-CRRA) * vPbarFuncNext(bNrmNext)

    # Take expectation across permanent income shocks
    EndOfPrdvP = (DiscFac * Rfree * LivPrb *
                  np.sum(vPbarNext * PermShkPrbs_rep, axis=1, keepdims=True))

    # Compute scaling factor for each transitory shock
    TranShkScaleFac_temp = (frac * (WageRte * TranShkGrid)**(LbrCost * frac) *
                            (LbrCost**(-LbrCost * frac) + LbrCost**frac))

    # Flip it to be a row vector
    TranShkScaleFac = np.reshape(TranShkScaleFac_temp, (1, TranShkGrid.size))

    # Use the first order condition to compute an array of "composite good" x_t values corresponding to (a_t,theta_t) values
    xNow = (np.dot(EndOfPrdvP,
                   TranShkScaleFac))**(-1.0 / (CRRA - LbrCost * frac))

    # Transform the composite good x_t values into consumption c_t and leisure z_t values
    TranShkGrid_rep = np.tile(np.reshape(TranShkGrid, (1, TranShkGrid.size)),
                              (aXtraCount, 1))
    xNowPow = xNow**frac  # Will use this object multiple times in math below

    # Find optimal consumption from optimal composite good
    cNrmNow = ((
        (WageRte * TranShkGrid_rep) / LbrCost)**(LbrCost * frac)) * xNowPow

    # Find optimal leisure from optimal composite good
    LsrNow = (LbrCost / (WageRte * TranShkGrid_rep))**frac * xNowPow

    # The zero-th transitory shock is TranShk=0, and the solution is to not work: Lsr = 1, Lbr = 0.
    cNrmNow[:, 0] = uPinv(EndOfPrdvP.flatten())
    LsrNow[:, 0] = 1.0

    # Agent cannot choose to work a negative amount of time. When this occurs, set
    # leisure to one and recompute consumption using simplified first order condition.
    # Find where labor would be negative if unconstrained
    violates_labor_constraint = LsrNow > 1.0
    EndOfPrdvP_temp = np.tile(np.reshape(EndOfPrdvP, (aXtraCount, 1)),
                              (1, TranShkCount))
    cNrmNow[violates_labor_constraint] = uPinv(
        EndOfPrdvP_temp[violates_labor_constraint])
    LsrNow[violates_labor_constraint] = 1.0  # Set up z=1, upper limit

    # Calculate the endogenous bNrm states by inverting the within-period transition
    aNrmNow_rep = np.tile(np.reshape(aXtraGrid, (aXtraCount, 1)),
                          (1, TranShkGrid.size))
    bNrmNow = (aNrmNow_rep - WageRte * TranShkGrid_rep + cNrmNow +
               WageRte * TranShkGrid_rep * LsrNow)

    # Add an extra gridpoint at the absolute minimal valid value for b_t for each TranShk;
    # this corresponds to working 100% of the time and consuming nothing.
    bNowArray = np.concatenate((np.reshape(-WageRte * TranShkGrid,
                                           (1, TranShkGrid.size)), bNrmNow),
                               axis=0)
    # Consume nothing
    cNowArray = np.concatenate((np.zeros((1, TranShkGrid.size)), cNrmNow),
                               axis=0)
    # And no leisure!
    LsrNowArray = np.concatenate((np.zeros((1, TranShkGrid.size)), LsrNow),
                                 axis=0)
    LsrNowArray[0, 0] = 1.0  # Don't work at all if TranShk=0, even if bNrm=0
    LbrNowArray = 1.0 - LsrNowArray  # Labor is the complement of leisure

    # Get (pseudo-inverse) marginal value of bank balances using end of period
    # marginal value of assets (envelope condition), adding a column of zeros
    # zeros on the left edge, representing the limit at the minimum value of b_t.
    vPnvrsNowArray = np.concatenate((np.zeros(
        (1, TranShkGrid.size)), uPinv(EndOfPrdvP_temp)))

    # Construct consumption and marginal value functions for this period
    bNrmMinNow = LinearInterp(TranShkGrid, bNowArray[0, :])

    # Loop over each transitory shock and make a linear interpolation to get lists
    # of optimal consumption, labor and (pseudo-inverse) marginal value by TranShk
    cFuncNow_list = []
    LbrFuncNow_list = []
    vPnvrsFuncNow_list = []
    for j in range(TranShkGrid.size):
        # Adjust bNrmNow for this transitory shock, so bNrmNow_temp[0] = 0
        bNrmNow_temp = bNowArray[:, j] - bNowArray[0, j]

        # Make consumption function for this transitory shock
        cFuncNow_list.append(LinearInterp(bNrmNow_temp, cNowArray[:, j]))

        # Make labor function for this transitory shock
        LbrFuncNow_list.append(LinearInterp(bNrmNow_temp, LbrNowArray[:, j]))

        # Make pseudo-inverse marginal value function for this transitory shock
        vPnvrsFuncNow_list.append(
            LinearInterp(bNrmNow_temp, vPnvrsNowArray[:, j]))

    # Make linear interpolation by combining the lists of consumption, labor and marginal value functions
    cFuncNowBase = LinearInterpOnInterp1D(cFuncNow_list, TranShkGrid)
    LbrFuncNowBase = LinearInterpOnInterp1D(LbrFuncNow_list, TranShkGrid)
    vPnvrsFuncNowBase = LinearInterpOnInterp1D(vPnvrsFuncNow_list, TranShkGrid)

    # Construct consumption, labor, pseudo-inverse marginal value functions with
    # bNrmMinNow as the lower bound.  This removes the adjustment in the loop above.
    cFuncNow = VariableLowerBoundFunc2D(cFuncNowBase, bNrmMinNow)
    LbrFuncNow = VariableLowerBoundFunc2D(LbrFuncNowBase, bNrmMinNow)
    vPnvrsFuncNow = VariableLowerBoundFunc2D(vPnvrsFuncNowBase, bNrmMinNow)

    # Construct the marginal value function by "recurving" its pseudo-inverse
    vPfuncNow = MargValueFuncCRRA(vPnvrsFuncNow, CRRA)

    # Make a solution object for this period and return it
    solution = ConsumerLaborSolution(cFunc=cFuncNow,
                                     LbrFunc=LbrFuncNow,
                                     vPfunc=vPfuncNow,
                                     bNrmMin=bNrmMinNow)
    return solution
Ejemplo n.º 12
0
    def update_solution_terminal(self):
        """
        Updates the terminal period solution and solves for optimal consumption
        and labor when there is no future.

        Parameters
        ----------
        None

        Returns
        -------
        None
        """
        t = -1
        TranShkGrid = self.TranShkGrid[t]
        LbrCost = self.LbrCost[t]
        WageRte = self.WageRte[t]

        bNrmGrid = np.insert(
            self.aXtraGrid, 0, 0.0
        )  # Add a point at b_t = 0 to make sure that bNrmGrid goes down to 0
        bNrmCount = bNrmGrid.size  # 201
        TranShkCount = TranShkGrid.size  # = (7,)
        bNrmGridTerm = np.tile(
            np.reshape(bNrmGrid, (bNrmCount, 1)),
            (1, TranShkCount
             ))  # Replicated bNrmGrid for each transitory shock theta_t
        TranShkGridTerm = np.tile(
            TranShkGrid, (bNrmCount, 1)
        )  # Tile the grid of transitory shocks for the terminal solution. (201,7)

        # Array of labor (leisure) values for terminal solution
        LsrTerm = np.minimum(
            (LbrCost / (1.0 + LbrCost)) * (bNrmGridTerm /
                                           (WageRte * TranShkGridTerm) + 1.0),
            1.0,
        )
        LsrTerm[0, 0] = 1.0
        LbrTerm = 1.0 - LsrTerm

        # Calculate market resources in terminal period, which is consumption
        mNrmTerm = bNrmGridTerm + LbrTerm * WageRte * TranShkGridTerm
        cNrmTerm = mNrmTerm  # Consume everything we have

        # Make a bilinear interpolation to represent the labor and consumption functions
        LbrFunc_terminal = BilinearInterp(LbrTerm, bNrmGrid, TranShkGrid)
        cFunc_terminal = BilinearInterp(cNrmTerm, bNrmGrid, TranShkGrid)

        # Compute the effective consumption value using consumption value and labor value at the terminal solution
        xEffTerm = LsrTerm**LbrCost * cNrmTerm
        vNvrsFunc_terminal = BilinearInterp(xEffTerm, bNrmGrid, TranShkGrid)
        vFunc_terminal = ValueFuncCRRA(vNvrsFunc_terminal, self.CRRA)

        # Using the envelope condition at the terminal solution to estimate the marginal value function
        vPterm = LsrTerm**LbrCost * CRRAutilityP(xEffTerm, gam=self.CRRA)
        vPnvrsTerm = CRRAutilityP_inv(
            vPterm, gam=self.CRRA
        )  # Evaluate the inverse of the CRRA marginal utility function at a given marginal value, vP

        vPnvrsFunc_terminal = BilinearInterp(vPnvrsTerm, bNrmGrid, TranShkGrid)
        vPfunc_terminal = MargValueFuncCRRA(
            vPnvrsFunc_terminal, self.CRRA)  # Get the Marginal Value function

        bNrmMin_terminal = ConstantFunction(
            0.0
        )  # Trivial function that return the same real output for any input

        self.solution_terminal = ConsumerLaborSolution(
            cFunc=cFunc_terminal,
            LbrFunc=LbrFunc_terminal,
            vFunc=vFunc_terminal,
            vPfunc=vPfunc_terminal,
            bNrmMin=bNrmMin_terminal,
        )
Ejemplo n.º 13
0
def solve_ConsRepAgent(
    solution_next, DiscFac, CRRA, IncShkDstn, CapShare, DeprFac, PermGroFac, aXtraGrid
):
    """
    Solve one period of the simple representative agent consumption-saving model.

    Parameters
    ----------
    solution_next : ConsumerSolution
        Solution to the next period's problem (i.e. previous iteration).
    DiscFac : float
        Intertemporal discount factor for future utility.
    CRRA : float
        Coefficient of relative risk aversion.
    IncShkDstn : distribution.Distribution
        A discrete
        approximation to the income process between the period being solved
        and the one immediately following (in solution_next). Order: 
        permanent shocks, transitory shocks.
    CapShare : float
        Capital's share of income in Cobb-Douglas production function.
    DeprFac : float
        Depreciation rate of capital.
    PermGroFac : float
        Expected permanent income growth factor at the end of this period.
    aXtraGrid : np.array
        Array of "extra" end-of-period asset values-- assets above the
        absolute minimum acceptable level.  In this model, the minimum acceptable
        level is always zero.

    Returns
    -------
    solution_now : ConsumerSolution
        Solution to this period's problem (new iteration).
    """
    # Unpack next period's solution and the income distribution
    vPfuncNext = solution_next.vPfunc
    ShkPrbsNext = IncShkDstn.pmf
    PermShkValsNext = IncShkDstn.X[0]
    TranShkValsNext = IncShkDstn.X[1]

    # Make tiled versions of end-of-period assets, shocks, and probabilities
    aNrmNow = aXtraGrid
    aNrmCount = aNrmNow.size
    ShkCount = ShkPrbsNext.size
    aNrm_tiled = np.tile(np.reshape(aNrmNow, (aNrmCount, 1)), (1, ShkCount))

    # Tile arrays of the income shocks and put them into useful shapes
    PermShkVals_tiled = np.tile(
        np.reshape(PermShkValsNext, (1, ShkCount)), (aNrmCount, 1)
    )
    TranShkVals_tiled = np.tile(
        np.reshape(TranShkValsNext, (1, ShkCount)), (aNrmCount, 1)
    )
    ShkPrbs_tiled = np.tile(np.reshape(ShkPrbsNext, (1, ShkCount)), (aNrmCount, 1))

    # Calculate next period's capital-to-permanent-labor ratio under each combination
    # of end-of-period assets and shock realization
    kNrmNext = aNrm_tiled / (PermGroFac * PermShkVals_tiled)

    # Calculate next period's market resources
    KtoLnext = kNrmNext / TranShkVals_tiled
    RfreeNext = 1.0 - DeprFac + CapShare * KtoLnext ** (CapShare - 1.0)
    wRteNext = (1.0 - CapShare) * KtoLnext ** CapShare
    mNrmNext = RfreeNext * kNrmNext + wRteNext * TranShkVals_tiled

    # Calculate end-of-period marginal value of assets for the RA
    vPnext = vPfuncNext(mNrmNext)
    EndOfPrdvP = DiscFac * np.sum(
        RfreeNext
        * (PermGroFac * PermShkVals_tiled) ** (-CRRA)
        * vPnext
        * ShkPrbs_tiled,
        axis=1,
    )

    # Invert the first order condition to get consumption, then find endogenous gridpoints
    cNrmNow = EndOfPrdvP ** (-1.0 / CRRA)
    mNrmNow = aNrmNow + cNrmNow

    # Construct the consumption function and the marginal value function
    cFuncNow = LinearInterp(np.insert(mNrmNow, 0, 0.0), np.insert(cNrmNow, 0, 0.0))
    vPfuncNow = MargValueFuncCRRA(cFuncNow, CRRA)

    # Construct and return the solution for this period
    solution_now = ConsumerSolution(cFunc=cFuncNow, vPfunc=vPfuncNow)
    return solution_now
Ejemplo n.º 14
0
def solve_ConsRepAgentMarkov(
    solution_next,
    MrkvArray,
    DiscFac,
    CRRA,
    IncShkDstn,
    CapShare,
    DeprFac,
    PermGroFac,
    aXtraGrid,
):
    """
    Solve one period of the simple representative agent consumption-saving model.
    This version supports a discrete Markov process.

    Parameters
    ----------
    solution_next : ConsumerSolution
        Solution to the next period's problem (i.e. previous iteration).
    MrkvArray : np.array
        Markov transition array between this period and next period.
    DiscFac : float
        Intertemporal discount factor for future utility.
    CRRA : float
        Coefficient of relative risk aversion.
    IncShkDstn : [distribution.Distribution]
        A list of discrete
        approximations to the income process between the period being solved
        and the one immediately following (in solution_next). Order: event
        probabilities, permanent shocks, transitory shocks.
    CapShare : float
        Capital's share of income in Cobb-Douglas production function.
    DeprFac : float
        Depreciation rate of capital.
    PermGroFac : [float]
        Expected permanent income growth factor for each state we could be in
        next period.
    aXtraGrid : np.array
        Array of "extra" end-of-period asset values-- assets above the
        absolute minimum acceptable level.  In this model, the minimum acceptable
        level is always zero.

    Returns
    -------
    solution_now : ConsumerSolution
        Solution to this period's problem (new iteration).
    """
    # Define basic objects
    StateCount = MrkvArray.shape[0]
    aNrmNow = aXtraGrid
    aNrmCount = aNrmNow.size
    EndOfPrdvP_cond = np.zeros((StateCount, aNrmCount)) + np.nan

    # Loop over *next period* states, calculating conditional EndOfPrdvP
    for j in range(StateCount):
        # Define next-period-state conditional objects
        vPfuncNext = solution_next.vPfunc[j]
        ShkPrbsNext = IncShkDstn[j].pmf
        PermShkValsNext = IncShkDstn[j].X[0]
        TranShkValsNext = IncShkDstn[j].X[1]

        # Make tiled versions of end-of-period assets, shocks, and probabilities
        ShkCount = ShkPrbsNext.size
        aNrm_tiled = np.tile(np.reshape(aNrmNow, (aNrmCount, 1)), (1, ShkCount))

        # Tile arrays of the income shocks and put them into useful shapes
        PermShkVals_tiled = np.tile(
            np.reshape(PermShkValsNext, (1, ShkCount)), (aNrmCount, 1)
        )
        TranShkVals_tiled = np.tile(
            np.reshape(TranShkValsNext, (1, ShkCount)), (aNrmCount, 1)
        )
        ShkPrbs_tiled = np.tile(np.reshape(ShkPrbsNext, (1, ShkCount)), (aNrmCount, 1))

        # Calculate next period's capital-to-permanent-labor ratio under each combination
        # of end-of-period assets and shock realization
        kNrmNext = aNrm_tiled / (PermGroFac[j] * PermShkVals_tiled)

        # Calculate next period's market resources
        KtoLnext = kNrmNext / TranShkVals_tiled
        RfreeNext = 1.0 - DeprFac + CapShare * KtoLnext ** (CapShare - 1.0)
        wRteNext = (1.0 - CapShare) * KtoLnext ** CapShare
        mNrmNext = RfreeNext * kNrmNext + wRteNext * TranShkVals_tiled

        # Calculate end-of-period marginal value of assets for the RA
        vPnext = vPfuncNext(mNrmNext)
        EndOfPrdvP_cond[j, :] = DiscFac * np.sum(
            RfreeNext
            * (PermGroFac[j] * PermShkVals_tiled) ** (-CRRA)
            * vPnext
            * ShkPrbs_tiled,
            axis=1,
        )

    # Apply the Markov transition matrix to get unconditional end-of-period marginal value
    EndOfPrdvP = np.dot(MrkvArray, EndOfPrdvP_cond)

    # Construct the consumption function and marginal value function for each discrete state
    cFuncNow_list = []
    vPfuncNow_list = []
    for i in range(StateCount):
        # Invert the first order condition to get consumption, then find endogenous gridpoints
        cNrmNow = EndOfPrdvP[i, :] ** (-1.0 / CRRA)
        mNrmNow = aNrmNow + cNrmNow

        # Construct the consumption function and the marginal value function
        cFuncNow_list.append(
            LinearInterp(np.insert(mNrmNow, 0, 0.0), np.insert(cNrmNow, 0, 0.0))
        )
        vPfuncNow_list.append(MargValueFuncCRRA(cFuncNow_list[-1], CRRA))

    # Construct and return the solution for this period
    solution_now = ConsumerSolution(cFunc=cFuncNow_list, vPfunc=vPfuncNow_list)
    return solution_now