Ejemplo n.º 1
0
    def getShocks(self):
        '''
        Draws a new Markov state and income shocks for the representative agent.
        
        Parameters
        ----------
        None
        
        Returns
        -------
        None
        '''
        cutoffs = np.cumsum(self.MrkvArray[self.MrkvNow, :])
        MrkvDraw = drawUniform(N=1, seed=self.RNG.randint(0, 2**31 - 1))
        self.MrkvNow = np.searchsorted(cutoffs, MrkvDraw)

        t = self.t_cycle[0]
        i = self.MrkvNow[0]
        IncomeDstnNow = self.IncomeDstn[t - 1][
            i]  # set current income distribution
        PermGroFacNow = self.PermGroFac[t -
                                        1][i]  # and permanent growth factor
        Indices = np.arange(IncomeDstnNow[0].size)  # just a list of integers
        # Get random draws of income shocks from the discrete distribution
        EventDraw = drawDiscrete(N=1,
                                 X=Indices,
                                 P=IncomeDstnNow[0],
                                 exact_match=False,
                                 seed=self.RNG.randint(0, 2**31 - 1))
        PermShkNow = IncomeDstnNow[1][
            EventDraw] * PermGroFacNow  # permanent "shock" includes expected growth
        TranShkNow = IncomeDstnNow[2][EventDraw]
        self.PermShkNow = np.array(PermShkNow)
        self.TranShkNow = np.array(TranShkNow)
Ejemplo n.º 2
0
    def makeAggShkHist(self):
        '''
        Make simulated histories of aggregate transitory and permanent shocks. Histories are of
        length self.act_T, for use in the general equilibrium simulation.  This replicates the same
        method for CobbDouglasEconomy; future version should create parent class.
        
        Parameters
        ----------
        None
            
        Returns
        -------
        None
        '''
        sim_periods = self.act_T
        Events = np.arange(self.AggShkDstn[0].size)  # just a list of integers
        EventDraws = drawDiscrete(N=sim_periods,
                                  P=self.AggShkDstn[0],
                                  X=Events,
                                  seed=0)
        PermShkAggHist = self.AggShkDstn[1][EventDraws]
        TranShkAggHist = self.AggShkDstn[2][EventDraws]

        # Store the histories
        self.PermShkAggHist = PermShkAggHist
        self.TranShkAggHist = TranShkAggHist
Ejemplo n.º 3
0
    def makeAggShkHist(self):
        '''
        Make simulated histories of aggregate transitory and permanent shocks.
        Histories are of length self.act_T, for use in the general equilibrium
        simulation.
        
        Parameters
        ----------
        none
            
        Returns
        -------
        none
        '''
        sim_periods = self.act_T
        Events = np.arange(self.AggShkDstn[0].size)  # just a list of integers
        EventDraws = drawDiscrete(N=sim_periods,
                                  P=self.AggShkDstn[0],
                                  X=Events,
                                  seed=0)
        PermShkAggHist = self.AggShkDstn[1][EventDraws]
        TranShkAggHist = self.AggShkDstn[2][EventDraws]

        # Store the histories
        self.PermShkAggHist = PermShkAggHist
        self.TranShkAggHist = TranShkAggHist
Ejemplo n.º 4
0
 def reset(self):
     self.initializeSim()
     self.t_age = drawDiscrete(self.AgentCount,P=self.AgeDstn,X=np.arange(self.AgeDstn.size),exact_match=False,seed=self.RNG.randint(0,2**31-1)).astype(int)
     self.t_cycle = copy(self.t_age)
     if hasattr(self,'kGrid'):
         self.aLvlNow = self.kInit*np.ones(self.AgentCount) # Start simulation near SS
         self.aNrmNow = self.aLvlNow/self.pLvlNow
Ejemplo n.º 5
0
 def reset(self):
     self.initializeSim()
     self.t_age = drawDiscrete(self.AgentCount,
                               P=self.AgeDstn,
                               X=np.arange(self.AgeDstn.size),
                               exact_match=False,
                               seed=self.RNG.randint(0,
                                                     2**31 - 1)).astype(int)
     self.t_cycle = copy(self.t_age)
Ejemplo n.º 6
0
 def reset(self):
     self.initializeSim()
     self.t_age = drawDiscrete(self.AgentCount,
                               P=self.AgeDstn,
                               X=np.arange(self.AgeDstn.size),
                               exact_match=False,
                               seed=self.RNG.randint(0,
                                                     2**31 - 1)).astype(int)
     self.t_cycle = copy(self.t_age)
     if hasattr(self, 'kGrid'):
         self.aLvlNow = self.kInit * np.ones(
             self.AgentCount)  # Start simulation near SS
         self.aNrmNow = self.aLvlNow / self.pLvlNow
Ejemplo n.º 7
0
 def makeIncShkHist(self):
     '''
     Makes histories of simulated income shocks for this consumer type by
     drawing from the discrete income distributions, respecting the Markov
     state for each agent in each period.  Should be run after makeMrkvHist().
     
     Parameters
     ----------
     none
     
     Returns
     -------
     none
     '''
     orig_time = self.time_flow
     self.timeFwd()
     self.resetRNG()
     
     # Initialize the shock histories
     N = self.MrkvArray.shape[0]
     PermShkHist = np.zeros((self.sim_periods,self.Nagents)) + np.nan
     TranShkHist = np.zeros((self.sim_periods,self.Nagents)) + np.nan
     PermShkHist[0,:] = 1.0
     TranShkHist[0,:] = 1.0
     t_idx = 0
     
     # Draw income shocks for each simulated period, respecting the Markov state
     for t in range(1,self.sim_periods):
         MrkvNow = self.MrkvHist[t,:]
         IncomeDstn_list    = self.IncomeDstn[t_idx]
         PermGroFac_list    = self.PermGroFac[t_idx]
         for n in range(N):
             these = MrkvNow == n
             IncomeDstnNow = IncomeDstn_list[n]
             PermGroFacNow = PermGroFac_list[n]
             Indices          = np.arange(IncomeDstnNow[0].size) # just a list of integers
             # Get random draws of income shocks from the discrete distribution
             EventDraws       = drawDiscrete(N=np.sum(these),X=Indices,P=IncomeDstnNow[0],exact_match=False,seed=self.RNG.randint(0,2**31-1))
             PermShkHist[t,these] = IncomeDstnNow[1][EventDraws]*PermGroFacNow
             TranShkHist[t,these] = IncomeDstnNow[2][EventDraws]
         # Advance the time index, looping if we've run out of income distributions
         t_idx += 1
         if t_idx >= len(self.IncomeDstn):
             t_idx = 0
     
     # Store the results as attributes of self and restore time to its original flow        
     self.PermShkHist = PermShkHist
     self.TranShkHist = TranShkHist
     if not orig_time:
         self.timeRev()
Ejemplo n.º 8
0
 def simBirth(self, which_agents):
     '''
     Agents do not die in this model, so birth only happens at time 0.
     Agents get given levels of labor income and assets according to the
     steady state distribution
     
     Parameters
     ----------
     which_agents : np.array(Bool)
         Boolean array of size self.AgentCount indicating which agents should be "born".
         Note in this model birth only happens once at time zero, for all agents
     
     Returns
     -------
     None
     '''
     # Get and store states for newly born agents
     N = np.sum(which_agents)  # Number of new consumers to make
     # Agents are given productivity and asset levels from the steady state
     #distribution
     joint_distr = self.SR['joint_distr']
     mgrid = self.mgrid
     col_indicies = np.repeat([range(joint_distr.shape[1])],
                              joint_distr.shape[0], 0).flatten()
     row_indicies = np.transpose(
         np.repeat([range(joint_distr.shape[0])], joint_distr.shape[1],
                   0)).flatten()
     draws = drawDiscrete(N,
                          np.array(joint_distr).flatten(),
                          range(joint_distr.size),
                          seed=self.RNG.randint(0, 2**31 - 1))
     draws_rows = row_indicies[draws]
     draws_cols = col_indicies[draws]
     #steady state consumption function is in terms of end of period savings and income state
     self.bNow[which_agents] = mgrid[draws_rows]
     self.incStateNow[which_agents] = draws_cols
     self.t_age[
         which_agents] = 0  # How many periods since each agent was born
     self.t_cycle[
         which_agents] = 0  # Which period of the cycle each agent is currently in
     return None
Ejemplo n.º 9
0
    def makeAggShkHist(self):
        '''
        Make simulated histories of aggregate transitory and permanent shocks.
        Histories are of length self.act_T, for use in the general equilibrium
        simulation.
        
        Parameters
        ----------
        none
            
        Returns
        -------
        none
        '''
        sim_periods = self.act_T
        Events      = np.arange(self.AggShkDstn[0].size) # just a list of integers
        EventDraws  = drawDiscrete(N=sim_periods,P=self.AggShkDstn[0],X=Events,seed=0)
        PermShkAggHist = self.AggShkDstn[1][EventDraws]
#        TranShkAggHist = self.AggShkDstn[2][EventDraws]
        
        # Store the histories       
        self.PermShkAggHist = PermShkAggHist
Ejemplo n.º 10
0
 def makeAggShkHist(self):
     '''
     Make simulated histories of aggregate transitory and permanent shocks. Histories are of
     length self.act_T, for use in the general equilibrium simulation.  This replicates the same
     method for CobbDouglasEconomy; future version should create parent class.
     
     Parameters
     ----------
     None
         
     Returns
     -------
     None
     '''
     sim_periods = self.act_T
     Events      = np.arange(self.AggShkDstn[0].size) # just a list of integers
     EventDraws  = drawDiscrete(N=sim_periods,P=self.AggShkDstn[0],X=Events,seed=0)
     PermShkAggHist = self.AggShkDstn[1][EventDraws]
     TranShkAggHist = self.AggShkDstn[2][EventDraws]
     
     # Store the histories       
     self.PermShkAggHist = PermShkAggHist
     self.TranShkAggHist = TranShkAggHist
Ejemplo n.º 11
0
    # Set target Lorenz points and K/Y ratio (MOVE THIS TO SetupParams)
    if Params.do_liquid:
        lorenz_target = np.array([0.0, 0.004, 0.025, 0.117])
        KY_target = 6.60
    else:  # This is hacky until I can find the liquid wealth data and import it
        lorenz_target = getLorenzShares(
            Params.SCF_wealth,
            weights=Params.SCF_weights,
            percentiles=Params.percentiles_to_match)
        #lorenz_target = np.array([-0.002, 0.01, 0.053,0.171])
        KY_target = 10.26

    # Make a vector of initial wealth-to-permanent income ratios
    a_init = drawDiscrete(N=Params.sim_pop_size,
                          P=Params.a0_probs,
                          X=Params.a0_values,
                          seed=Params.a0_seed)

    # Make the list of types for this run, whether infinite or lifecycle
    if Params.do_lifecycle:
        # Make cohort scaling array
        cohort_scale = Params.TFP_growth**(-np.arange(Params.total_T + 1))
        cohort_scale_array = np.tile(
            np.reshape(cohort_scale, (Params.total_T + 1, 1)),
            (1, Params.sim_pop_size))

        # Make base consumer types for each education level
        DropoutType = cstwMPCagent(**Params.init_dropout)
        DropoutType.a_init = a_init
        DropoutType.cohort_scale = cohort_scale_array
        HighschoolType = deepcopy(DropoutType)
Ejemplo n.º 12
0
    def getShocks(self):
        '''
        Gets permanent and transitory income shocks for this period.  Samples from IncomeDstn for
        each period in the cycle.
        
        Parameters
        ----------
        None
        
        Returns
        -------
        None
        '''
        PermShkNow = np.zeros(self.AgentCount)  # Initialize shock arrays
        TranShkNow = np.zeros(self.AgentCount)
        PrefShkNow = np.zeros(self.AgentCount)
        newborn = self.t_age == 0
        for t in range(self.T_cycle):
            these = t == self.t_cycle
            N = np.sum(these)
            if N > 0:
                IncomeDstnNow = self.IncomeAndPrefDstn[
                    t - 1]  # set current income distribution
                PermGroFacNow = self.PermGroFac[
                    t - 1]  # and permanent growth factor
                Indices = np.arange(
                    IncomeDstnNow[0].size)  # just a list of integers
                # Get random draws of income shocks from the discrete distribution
                EventDraws = drawDiscrete(N,
                                          X=Indices,
                                          P=IncomeDstnNow[0],
                                          exact_match=False,
                                          seed=self.RNG.randint(0, 2**31 - 1))
                PermShkNow[these] = IncomeDstnNow[1][
                    EventDraws] * PermGroFacNow  # permanent "shock" includes expected growth
                TranShkNow[these] = IncomeDstnNow[2][EventDraws]
                PrefShkNow[these] = IncomeDstnNow[3][EventDraws]

        # That procedure used the *last* period in the sequence for newborns, but that's not right
        # Redraw shocks for newborns, using the *first* period in the sequence.  Approximation.
        N = np.sum(newborn)
        if N > 0:
            these = newborn
            IncomeDstnNow = self.IncomeAndPrefDstn[
                0]  # set current income distribution
            PermGroFacNow = self.PermGroFac[0]  # and permanent growth factor
            Indices = np.arange(
                IncomeDstnNow[0].size)  # just a list of integers
            # Get random draws of income shocks from the discrete distribution
            EventDraws = drawDiscrete(N,
                                      X=Indices,
                                      P=IncomeDstnNow[0],
                                      exact_match=False,
                                      seed=self.RNG.randint(0, 2**31 - 1))
            PermShkNow[these] = IncomeDstnNow[1][
                EventDraws] * PermGroFacNow  # permanent "shock" includes expected growth
            TranShkNow[these] = IncomeDstnNow[2][EventDraws]
            PrefShkNow[these] = IncomeDstnNow[3][EventDraws]
#        PermShkNow[newborn] = 1.0
        TranShkNow[newborn] = 1.0

        # Store the shocks in self
        self.EmpNow = np.ones(self.AgentCount, dtype=bool)
        self.EmpNow[TranShkNow == self.IncUnemp] = False
        self.PermShkNow = PermShkNow
        self.TranShkNow = TranShkNow
        self.PrefShkNow = PrefShkNow
Ejemplo n.º 13
0
# Set booleans to determine which tasks should be done
estimate_model = True
compute_standard_errors = False
make_contour_plot = True

#=====================================================
# Define objects and functions used for the estimation
#=====================================================

# Make a lifecycle consumer to be used for estimation, including simulated shocks (plus an initial distribution of wealth)
EstimationAgent = Model.ConsumerType(**Params.init_consumer_objects)
EstimationAgent(sim_periods=EstimationAgent.T_total + 1)
EstimationAgent.makeIncShkHist()
EstimationAgent.a_init = drawDiscrete(
    P=Params.initial_wealth_income_ratio_probs,
    X=Params.initial_wealth_income_ratio_vals,
    N=Params.num_agents,
    seed=Params.seed)


# Define the objective function for the estimation
def smmObjectiveFxn(DiscFacAdj,
                    CRRA,
                    agent=EstimationAgent,
                    DiscFacAdj_bound=Params.DiscFacAdj_bound,
                    CRRA_bound=Params.CRRA_bound,
                    empirical_data=Data.w_to_y_data,
                    empirical_weights=Data.empirical_weights,
                    empirical_groups=Data.empirical_groups,
                    map_simulated_to_empirical_cohorts=Data.
                    simulation_map_cohorts_to_age_indices):
Ejemplo n.º 14
0
            which_agents] = 0  # How many periods since each agent was born
        self.t_cycle[
            which_agents] = 0  # Which period of the cycle each agents is currently in
        return None


# Make a lifecycle consumer to be used for estimation, including simulated shocks (plus an initial distribution of wealth)
EstimationAgent = TempConsumerType(
    **Params.init_consumer_objects)  # Make a TempConsumerType for estimation
EstimationAgent(T_sim=EstimationAgent.T_cycle +
                1)  # Set the number of periods to simulate
EstimationAgent.track_vars = ['bNrmNow'
                              ]  # Choose to track bank balances as wealth
EstimationAgent.aNrmInit = drawDiscrete(
    N=Params.num_agents,
    P=Params.initial_wealth_income_ratio_probs,
    X=Params.initial_wealth_income_ratio_vals,
    seed=Params.seed)  # Draw initial assets for each consumer
EstimationAgent.makeShockHistory()


# Define the objective function for the simulated method of moments estimation
def smmObjectiveFxn(DiscFacAdj,
                    CRRA,
                    agent=EstimationAgent,
                    DiscFacAdj_bound=Params.DiscFacAdj_bound,
                    CRRA_bound=Params.CRRA_bound,
                    empirical_data=Data.w_to_y_data,
                    empirical_weights=Data.empirical_weights,
                    empirical_groups=Data.empirical_groups,
                    map_simulated_to_empirical_cohorts=Data.
Ejemplo n.º 15
0
# Set booleans to determine which tasks should be done
estimate_model = True             # Whether to estimate the model
compute_standard_errors = False   # Whether to get standard errors via bootstrap
make_contour_plot = False         # Whether to make a contour map of the objective function

#=====================================================
# Define objects and functions used for the estimation
#=====================================================

# Make a lifecycle consumer to be used for estimation, including simulated shocks (plus an initial distribution of wealth)
EstimationAgent = Model.IndShockConsumerType(**Params.init_consumer_objects) # Make a ConsumerType for estimation
<<<<<<< HEAD
EstimationAgent(sim_periods = EstimationAgent.T_total+1)             # Set the number of periods to simulate
EstimationAgent.makeIncShkHist()                                     # Make a simulated history of income shocks for many consumers
EstimationAgent.a_init = drawDiscrete(P=Params.initial_wealth_income_ratio_probs,
                                      X=Params.initial_wealth_income_ratio_vals,
                                      N=Params.num_agents,
=======
EstimationAgent.time_inv.remove('DiscFac')                           # This estimation uses age-varying discount factors as
EstimationAgent.time_vary.append('DiscFac')                          # estimated by Cagetti (2003), so switch from time_inv to time_vary
EstimationAgent(sim_periods = EstimationAgent.T_total+1)             # Set the number of periods to simulate
EstimationAgent.makeIncShkHist()                                     # Make a simulated history of income shocks for many consumers
EstimationAgent.a_init = drawDiscrete(N=Params.num_agents,
                                      P=Params.initial_wealth_income_ratio_probs,
                                      X=Params.initial_wealth_income_ratio_vals,                                      
>>>>>>> eeb37f24755d0c683c9d9efbe5e7447425c98b86
                                      seed=Params.seed)              # Draw initial assets for each consumer

# Define the objective function for the simulated method of moments estimation
def smmObjectiveFxn(DiscFacAdj, CRRA,
                     agent = EstimationAgent,
Ejemplo n.º 16
0
if __name__ == "__main__":
    # =================================================================
    # ====== Make the list of consumer types for estimation ===========
    #==================================================================
    
    # Set target Lorenz points and K/Y ratio (MOVE THIS TO SetupParams)
    if Params.do_liquid:
        lorenz_target = np.array([0.0, 0.004, 0.025,0.117])
        KY_target = 6.60
    else: # This is hacky until I can find the liquid wealth data and import it
        lorenz_target = getLorenzShares(Params.SCF_wealth,weights=Params.SCF_weights,percentiles=Params.percentiles_to_match)
        #lorenz_target = np.array([-0.002, 0.01, 0.053,0.171])
        KY_target = 10.26
       
    # Make a vector of initial wealth-to-permanent income ratios
    a_init = drawDiscrete(N=Params.sim_pop_size,P=Params.a0_probs,X=Params.a0_values,seed=Params.a0_seed)
                                             
    # Make the list of types for this run, whether infinite or lifecycle
    if Params.do_lifecycle:
        # Make cohort scaling array
        cohort_scale = Params.TFP_growth**(-np.arange(Params.total_T+1))
        cohort_scale_array = np.tile(np.reshape(cohort_scale,(Params.total_T+1,1)),(1,Params.sim_pop_size))
        
        # Make base consumer types for each education level
        DropoutType = cstwMPCagent(**Params.init_dropout)
        DropoutType.a_init = a_init
        DropoutType.cohort_scale = cohort_scale_array
        HighschoolType = deepcopy(DropoutType)
        HighschoolType(**Params.adj_highschool)
        CollegeType = deepcopy(DropoutType)
        CollegeType(**Params.adj_college)
Ejemplo n.º 17
0
        None
        '''
        # Get and store states for newly born agents
        self.aNrmNow[which_agents] = self.aNrmInit[which_agents] # Take directly from pre-specified distribution
        self.pLvlNow[which_agents] = 1.0 # No variation in permanent income needed
        self.t_age[which_agents]   = 0 # How many periods since each agent was born
        self.t_cycle[which_agents] = 0 # Which period of the cycle each agents is currently in
        return None


# Make a lifecycle consumer to be used for estimation, including simulated shocks (plus an initial distribution of wealth)
EstimationAgent = TempConsumerType(**Params.init_consumer_objects)   # Make a TempConsumerType for estimation
EstimationAgent(T_sim = EstimationAgent.T_cycle+1)                   # Set the number of periods to simulate
EstimationAgent.track_vars = ['bNrmNow']                             # Choose to track bank balances as wealth
EstimationAgent.aNrmInit = drawDiscrete(N=Params.num_agents,
                                      P=Params.initial_wealth_income_ratio_probs,
                                      X=Params.initial_wealth_income_ratio_vals,                                      
                                      seed=Params.seed)              # Draw initial assets for each consumer
EstimationAgent.makeShockHistory()

# Define the objective function for the simulated method of moments estimation
def smmObjectiveFxn(DiscFacAdj, CRRA,
                     agent = EstimationAgent,
                     DiscFacAdj_bound = Params.DiscFacAdj_bound,
                     CRRA_bound = Params.CRRA_bound,
                     empirical_data = Data.w_to_y_data,
                     empirical_weights = Data.empirical_weights,
                     empirical_groups = Data.empirical_groups,
                     map_simulated_to_empirical_cohorts = Data.simulation_map_cohorts_to_age_indices):
    '''
    The objective function for the SMM estimation.  Given values of discount factor
    adjuster DiscFacAdj, coeffecient of relative risk aversion CRRA, a base consumer