Ejemplo n.º 1
0
 def test_generate_model(self):
     """ Test that Monte Carlo modeling runs """
     try:
         import networkx
         import subprocess
     except ImportError as detail:
         self.skipTest(str(detail))
     domino_model = self.import_python_application('emagefit')
     fn_config = self.get_input_file_name("config.py")
     exp = utility.get_experiment_params(fn_config)
     fn_database = "monte_carlo_output_database.db"
     domino_model.generate_monte_carlo_model(exp,
                                             fn_database,
                                             seed=-1,
                                             write_solution=True)
     # test that the database and pdb files are generated and that they
     # are not empty
     self.assertTrue(os.path.exists(fn_database))
     self.assertGreater(os.path.getsize(fn_database), 0)
     fn_pdb = fn_database + ".pdb"
     self.assertTrue(os.path.exists(fn_pdb))
     self.assertGreater(os.path.getsize(fn_pdb), 0)
     # check that there is one solution in the database
     db = solutions_io.ResultsDB()
     db.connect(fn_database)
     data = db.get_solutions()
     self.assertEqual(len(data), 1)
     os.remove(fn_database)
     os.remove(fn_pdb)
Ejemplo n.º 2
0
 def test_generate_model(self):
     """ Test that Monte Carlo modeling runs """
     try:
         import networkx
         import subprocess
     except ImportError as detail:
         self.skipTest(str(detail))
     domino_model = self.import_python_application('emagefit')
     fn_config = self.get_input_file_name("config.py")
     exp = utility.get_experiment_params(fn_config)
     fn_database = "monte_carlo_output_database.db"
     domino_model.generate_monte_carlo_model(exp, fn_database, seed=-1,
                                             write_solution=True)
     # test that the database and pdb files are generated and that they
     # are not empty
     self.assertTrue(os.path.exists(fn_database))
     self.assertGreater(os.path.getsize(fn_database), 0)
     fn_pdb = fn_database + ".pdb"
     self.assertTrue(os.path.exists(fn_pdb))
     self.assertGreater(os.path.getsize(fn_pdb), 0)
     # check that there is one solution in the database
     db = solutions_io.ResultsDB()
     db.connect(fn_database)
     data = db.get_solutions()
     self.assertEqual(len(data), 1)
     os.remove(fn_database)
     os.remove(fn_pdb)
    def test_generating_clusters(self):
        """
            Test that the solutions generated by the clustering a the same
            as those obtainedduring the benchmark for the paper
        """
        emagefit_cluster = \
            self.import_python_application('emagefit_cluster')
        fn_config = self.get_input_file_name("config.py")
        fn_database = self.get_input_file_name("domino_solutions.db")
        fn_db_clusters = "clusters.db"
        # modify the names of the PDB files to include the proper name for
        # testing
        exp = utility.get_experiment_params(fn_config)
        for i in range(len(exp.fn_pdbs)):
            exp.fn_pdbs[i] = self.get_input_file_name(exp.fn_pdbs[i])
        n_solutions = 30
        orderby = "em2d"
        max_rmsd = 10
        tc = emagefit_cluster.AlignmentClustering(exp)
        tc.cluster(fn_database, n_solutions, orderby, max_rmsd)
        tc.store_clusters(fn_db_clusters, "clusters")

        # retrieve the largest cluster
        solutions_stored = '9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29'
        solutions_stored = map(int, solutions_stored.split("|"))
        db_clusters = solutions_io.ResultsDB()
        db_clusters.connect(fn_db_clusters)
        cl_record = db_clusters.get_nth_largest_cluster(1)
        elements = map(int, cl_record.elements.split("|"))
        for i, j in zip(solutions_stored, elements):
            self.assertEqual(i, j)
        db_clusters.close()
        os.remove(fn_db_clusters)
Ejemplo n.º 4
0
 def test_generate_model(self):
     """ Test that the DOMINO modeling runs """
     try:
         import networkx
         import subprocess
     except ImportError as detail:
         self.skipTest(str(detail))
     domino_model = self.import_python_application('emagefit')
     IMP.set_log_level(IMP.SILENT)
     fn = self.get_input_file_name("config.py")
     exp = utility.get_experiment_params(fn)
     fn_output_db = "domino_solutions_temp.db"
     domino_model.generate_domino_model(exp, fn_output_db)
     # assert that a database of results is created
     self.assertTrue(os.path.exists(fn_output_db))
     self.assertGreater(os.path.getsize(fn_output_db), 0)
     # check that there are solutions in the database
     db = solutions_io.ResultsDB()
     db.connect(fn_output_db)
     data = db.get_solutions()
     self.assertGreater(len(data), 0)
     columns = db.get_table_column_names("results")
     self.assertTrue("em2d" in columns)
     os.remove(fn_output_db)