def testEvaluateDKappa(self): "Test vonMisesSufficient.evaluate_derivative_kappa degenerate case" for i in xrange(100): randno = [uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100)] fn = vonMises(*randno) fn2 = vonMisesSufficient(randno[0], 1, 1, randno[1], randno[2]) self.assertAlmostEqual(fn.evaluate_derivative_kappa(), fn2.evaluate_derivative_kappa(), delta=0.001)
def testDensity(self): "Test vonMisesSufficient.density degenerate case" for i in xrange(100): randno = [uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100)] fn = vonMises(*randno) fn2 = vonMisesSufficient(randno[0], 1, 1, randno[1], randno[2]) self.assertAlmostEqual(fn.density(), fn2.density(), delta=0.001)
def testEvaluate(self): "tests vonMisesSufficient.evaluate" for i in xrange(100): randno = [uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100)] fn = vonMises(*randno) fn2 = vonMisesSufficient(randno[0], 1, 1, randno[1], randno[2]) self.assertAlmostEqual(fn.evaluate(), fn2.evaluate(), delta=0.001)
def testEvaluateDMu(self): "tests vonMises.evaluate_derivative_mu" for i in xrange(100): randno = [uniform(-4*pi,4*pi), uniform(-pi,pi), uniform(0.1,100)] fn=vonMises(*randno) self.assertAlmostEqual(fn.evaluate_derivative_mu(), -randno[2]*sin(randno[0]-randno[1]), delta=0.001)
def testDensity(self): "Test vonMisesSufficient.density degenerate case" for i in xrange(100): randno = [ uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100) ] fn = vonMises(*randno) fn2 = vonMisesSufficient(randno[0], 1, 1, randno[1], randno[2]) self.assertAlmostEqual(fn.density(), fn2.density(), delta=0.001)
def testEvaluateDMu(self): "tests vonMises.evaluate_derivative_mu" for i in xrange(100): randno = [ uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100) ] fn = vonMises(*randno) self.assertAlmostEqual(fn.evaluate_derivative_mu(), -randno[2] * sin(randno[0] - randno[1]), delta=0.001)
def testEvaluateDKappa(self): "Test vonMisesSufficient.evaluate_derivative_kappa degenerate case" for i in xrange(100): randno = [ uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100) ] fn = vonMises(*randno) fn2 = vonMisesSufficient(randno[0], 1, 1, randno[1], randno[2]) self.assertAlmostEqual(fn.evaluate_derivative_kappa(), fn2.evaluate_derivative_kappa(), delta=0.001)
def testDensity(self): "tests vonMises.density" try: from scipy.special import i0,i1 except ImportError: self.skipTest("this test requires the scipy Python module") for i in xrange(100): randno = [uniform(-4*pi,4*pi), uniform(-pi,pi), uniform(0.1,100)] fn=vonMises(*randno) self.assertAlmostEqual(fn.density(), exp(randno[2]*cos(randno[0]-randno[1]))/(2*pi*i0(randno[2])), delta=0.001)
def testEvaluateDKappa(self): "tests vonMises.evaluate_derivative_kappa" try: from scipy.special import i0,i1 except ImportError: self.skipTest("this test requires the scipy Python module") for i in xrange(100): randno = [uniform(-4*pi,4*pi), uniform(-pi,pi), uniform(0.1,100)] fn=vonMises(*randno) self.assertAlmostEqual(fn.evaluate_derivative_kappa(), i1(randno[2])/i0(randno[2]) - cos(randno[0]-randno[1]), delta=0.001)
def testEvaluateDKappa(self): "tests vonMises.evaluate_derivative_kappa" try: from scipy.special import i0, i1 except ImportError: self.skipTest("this test requires the scipy Python module") for i in xrange(100): randno = [ uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100) ] fn = vonMises(*randno) self.assertAlmostEqual(fn.evaluate_derivative_kappa(), i1(randno[2]) / i0(randno[2]) - cos(randno[0] - randno[1]), delta=0.001)
def testEvaluate(self): "tests vonMises.evaluate" try: from scipy.special import i0, i1 except ImportError: self.skipTest("this test requires the scipy Python module") for i in range(100): randno = [ uniform(-4 * pi, 4 * pi), uniform(-pi, pi), uniform(0.1, 100) ] fn = vonMises(*randno) self.assertAlmostEqual(fn.evaluate(), log(2 * pi * i0(randno[2])) - randno[2] * cos(randno[0] - randno[1]), delta=0.001)