Ejemplo n.º 1
0
def simulatedAnnealing(maxTry, chessBoard):
    # Initialization
    mTry = iterator = maxTry

    # Copy initiate board and count the value
    bestResult = copy.deepcopy(chessBoard)
    ts0, td0, qs0, qd0, rs0, rd0, bs0, bd0, ks0, kd0 = Checker.conflictChecker(bestResult)
    Value = ts0 - td0
    
    # Improved and accepted states counter
    improved = accepted = 0

    # Outer loop, which randomizes state until a number of steps
    while iterator > 0 :
        # Function that set the temperature
        T = math.log(mTry - iterator + 1, math.exp(1))
        
        # Generate a random state
        tempBoard = copy.deepcopy(bestResult)
        tempList = BoardHandler.createPiecesListWithPos(tempBoard)
        randPiece = tempList[randint(0, len(tempList)-1)]

        # Randomizes a piece's position
        randRow = randint(0, 7)
        randCol = randint(0, 7)
        while tempBoard[randRow][randCol] != ('.', "."):
            randRow = randint(0, 7) 
            randCol = randint(0, 7)
        tempBoard[randPiece[3]][randPiece[2]] = ('.', ".")
        tempBoard[randRow][randCol] = (randPiece[0], randPiece[1])

        # Count the randomized board value
        ts1, td1, qs1, qd1, rs1, rd1, bs1, bd1, ks1, kd1 = Checker.conflictChecker(tempBoard)
        tempValue = ts1 - td1
        
        # If the next state value is better, accept it
        if tempValue <= Value :
            bestResult = copy.deepcopy(tempBoard)
            Value = tempValue
            improved += 1
        # If the next state value is worse, accept with probability of it is higher than a random number
        elif tempValue > Value :

            sigmoidFunc = math.floor(math.exp(-T)) * 100
            randomNum = randint(0, 100)
            if sigmoidFunc > randomNum:
                bestResult = copy.deepcopy(tempBoard)
                Value = tempValue
                accepted += 1
        
        # Iterator value decreased
        iterator -= 1

    # Result of improved states
    print(improved)
    # Result of accepted states
    print(accepted)
    Printer.printSolutionToFile(bestResult, "SimulatedAnnealing")
    return bestResult
Ejemplo n.º 2
0
def GeneticAlgorithm(chessList):  #the process of genetic algorithm
    population = initialize_population(chessList)

    # for chromosome in population :
    # 	print(chromosome.fitness)
    i = 1
    while (population[0].fitness != 0):

        print("Generation :", i)

        populationSort(population)
        deleteLeastFit(population)

        # for chromosome in population :
        # 	print(chromosome.fitness)
        # 	print("===============")
        # 	print("PieceList")
        # 	print(chromosome.piecesLocation)

        # print("Crossover")
        # print("===============")

        index = 0
        while index < maxPopulation / 2:
            parent1, parent2 = getParents(population, index)
            if not (samePosition(parent1, parent2)):
                crossOver(population, parent1, parent2)

            index = index + 2

        # index = 0
        # parent1 , parent2 = getParents(population, index)
        # crossOver(population, parent1, parent2)

        populationSort(population)
        print("Fittest : ", population[0].fitness)
        # for chromosome in population :
        # 	print(chromosome.fitness)
        # for chromosome in population :
        # 	Printer.printChessBoard(chromosome.board)
        #

        # populationSort(population)
        i = i + 1

    print(population[0].piecesLocation)
    # BoardHandler.updateBoard(population[0].board, population[0].piecesLocation)
    Printer.printChessBoard(population[0].board)
Ejemplo n.º 3
0
def initialize_population(chessList):  #initialize the population
    population = []
    for i in range(100):
        chromosome = Chromosome()
        chromosome.board = []
        chromosome.piecesLocation = BoardHandler.random_genetic(
            chromosome.board, chessList)
        chromosome.fitness = Checker.conflictChecker(chromosome.board)[0]

        population.append(chromosome)

    Printer.printChessBoard(population[0].board)
    print(population[0].piecesLocation)
    print(population[0].fitness)

    return population
Ejemplo n.º 4
0
def hillC(maxTry, chessboard):
	# Generate initial state
	currentState = copy.deepcopy(chessboard)
	# Iterate Try times
	for i in range(maxTry):
		print(i)
		bestNeighbour = copy.deepcopy(getBestNeighbour(currentState))
		
		# Compare current state with best neighbour, if current state is better return current state, 
		if evaluate(bestNeighbour, currentState) > 0:
			Printer.printChessBoard(currentState)
			Printer.printSolutionToFile(currentState, "HillClimbing")
			return currentState
		Printer.printChessBoard(currentState)
		# else assign current state with best neighbour
		currentState = copy.deepcopy(bestNeighbour)
	
	# Return current state if function HC cannot find maximum until try times
	Printer.printChessBoard(currentState)
	Printer.printSolutionToFile(currentState, "HillClimbing")
	return currentState
Ejemplo n.º 5
0
def GeneticAlgorithm(chessList):  # the process of genetic algorithm
    population = initialize_population(chessList)
    generationCount = 1
    count = 1
    maxFitness = 0

    while generationCount <= maxGeneration:
        newGeneration = []
        index = 0
        while index < (maxPopulation / 2 - 1):
            parent1, parent2 = getParents(population, index)
            crossOver(newGeneration, parent1, parent2)
            index = index + 1
        population = newGeneration + population  # add new generation to current population
        populationSort(population)
        deleteLeastFit(population)
        print("Generation :" + str(generationCount) + ", Fittest : ",
              abs(population[0].fitness))
        if population[0].fitness != maxFitness:
            maxFitness = population[0].fitness
            count = 1
        else:
            count += 1

        if count == 100:  # if in 100 gen there is no change in fittest score
            print("Same fitness for " + str(count) + " gen")
            print("Terminate")
            time.sleep(1)
            break
        else:
            generationCount = generationCount + 1

    # print (population[0].piecesLocation)
    if generationCount == maxGeneration:
        print("Max iteration reach")
        time.sleep(1)
    Printer.printChessBoard(population[0].board)
    Printer.printSolutionToFile(population[0].board, "Genetic")
Ejemplo n.º 6
0
def mainMenu():
    chessBoard = []
    while True:
        if os.name == 'nt':  # Windows
            os.system('cls')
        elif os.name == 'posix':  # Linux
            os.system('clear')

        print(colorize(header, 'pink'))
        i = 1
        for item in menuItems:
            print("[" + str(i) + "] " + colorize(item, 'blue'))
            i += 1

        choice = int(input(">> "))

        try:
            if choice < 1:
                raise ValueError

            # Call the matching function
            if choice == 1:
                Printer.printDir("Inputs/")
                chessBoard = BoardHandler.createChessboard()
            elif choice == 2:
                Printer.printDir("Inputs/")
                chessBoard = BoardHandler.readChessboard()
            elif choice == 3:
                Printer.printChessBoard(chessBoard)
            elif choice == 7:
                credit()
            elif choice == 8:
                exit(0)
            else:
                print(">> That is not a valid input.")
        except (ValueError, IndexError):
            pass

        while True:
            text = input("\n>> Press enter to continue.")
            if text == "":
                break
            else:
                print("\n>> You did not press enter.")

        print("\n\n")
Ejemplo n.º 7
0
def mainMenu():
    chessBoard = []

    # Clear screen
    while True:
        if os.name == 'nt':  # Windows
            os.system('cls')
        elif os.name == 'posix':  # Linux
            os.system('clear')

        # Print header & menu options
        print(colorize(header, 'pink'))
        i = 1
        for item in menuItems:
            print("[" + str(i) + "] " + colorize(item, 'blue'))
            i += 1

        choice = int(input(">> "))

        try:
            if choice < 1:
                raise ValueError

            # Call the matching function
            if choice == 1:
                Printer.printDir("Inputs/")
                chessBoard = BoardHandler.createChessboard()
            elif choice == 2:
                Printer.printDir("Inputs/")
                chessBoard = BoardHandler.readChessboard()
            elif choice == 3:
                Printer.printChessBoard(chessBoard)
            elif choice == 4:
                maxTry = int(input(">> Enter maximum try : "))
                Printer.printChessBoard(hc.hillC(maxTry, chessBoard))
            elif choice == 5:
                maxTry = int(input(">> Enter maximum try : "))
                Printer.printChessBoard(
                    SimulatedAnnealing.simulatedAnnealing(maxTry, chessBoard))
            elif choice == 6:
                Genetic.GeneticAlgorithm(
                    BoardHandler.createPiecesList(chessBoard))
            elif choice == 7:
                helpMe()
            elif choice == 8:
                credit()
            elif choice == 9:
                exit(0)
            else:
                print(">> That is not a valid input.")
        except (ValueError, IndexError):
            pass

        # Users need to press enter to continue using program (refresh the display)
        while True:
            text = input("\n>> Press enter to continue.")
            if text == "":
                break
            else:
                print("\n>> You did not press enter.")

        print("\n\n")